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Abstract—As the internet plays a more crucial role in our daily
life, providing a stable connection between users becomes much
more important. In contrast to circuit switching (e.g. telephone
line); the internet works based on packet switching connection.
In packet switching; the proper sending rate of users is very
critical. To obtain a reliable connection; we need to govern
the congestion window of senders in the Transmission Control
Protocol (TCP) layer to avoid the congestion problem. Therefore,
controlling the congestion window properly would lead to a better
connection. Classic congestion models were mostly based on pre-
defined parameters that they don’t include the dynamic of the
data. In last years, using data-driven models -which define their
parameters based on the data- become more and more popular. In
this project, we use the Reinforcement Learning (RL) algorithm
to deal with Congestion Control (CC) problem. We also benefit
from the Mininet emulator to generate data and feed the RL
model. At this stage, the results might not beat the classical
models (like TCP cubic), but exploring such a new discipline for
an existing problem would be interesting and promising.

I. INTRODUCTION
A. Problem Description

As the most successful and advanced innovation in Industry
worldwide, Internet plays an essential role for people’s daily
routine [10]. Different from circuit switching used in telephone
network, Internet has provided a connectionless service that
utilizes packet switching technology, which allows more types
of data stream transferring (e.g., image, video, file, etc.) and
guarantees message transmission in a more convenient and
flexible way. The Internet Protocol is designed to stitch many
different networks together and hide underlying technology
from applications via Narrow-Waist or Hourglass model [12].

Based on the Hourglass model of computer network ar-
chitecture, network layer as well as transport layer get their
important role for packet transmission especially in the man-
agement of end-to-end connections for upper layer services.
The performance of emerging new applications depends heav-
ily on the interactions between the underlying network and
the transport layer. There’re quite a few intrinsic challenges
in the network layers, one of which is Congestion Control
(CO). Typically, network congestion arises in cases of traffic
overloading when a router is unable to handle data that arrives
at it, which would therefore cause router buffer overflow and
data loss, decreasing transmission efficiency and the overall
network throughput (check figure 1). The actual solution is
to reduce the network load by adjusting the frequency for
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sending out the packets on the sender side, where conges-
tion control could be modeled as an optimization problem.
In general, there’re two approaches for congestion control
implementation: End-to-end (E2E) CC and Network-assisted
CC [8]. End-to-end CC needs only senders and receivers
getting involved without other indicators from the internal
network while Network-assisted CC requires information from
intermediaries through network like routers. All these two
methods focus on designing a policy to enable sender send
packet in such a way that the overall network resources could
be leveraged to the fullest while network congestion could
also be avoided in the meanwhile, which indeed helps achieve
fairness and responsiveness in complex networking system.

There may be quite a few challenges remaining in E2E CC,
one of which is how to utilize implicit network signals for
designing the CC algorithms. Roughly, there’re several types
of mature E2E CC approaches on the ground: loss-based (e.g.
Tahoe, Reno, BIC-TCP, Cubic, etc), latency-based (e.g. Vegas,
Westwood) and link capacity-based (e.g. BBR). A classic
example is TCP Reno. As the most widely used protocols
in transport layer, TCP gains its advantages over ensuring a
reliable transfer as well as its capacity in avoiding network
congestion [5]. Through constructing a congestion window
(CWND), the sender would be able to control how much data
could be send out once a time (sending rate), while the window
size is changing adaptively according to the ACK received,
which ensures the smoothness of communication. Typically,
the size of CWND would increase additively every time ACK
has been acknowledged, and will reduce multiplicatively once
a packet loss is detected. [4]

B. Limitations of Current Approaches

The conservative approach of CC has witnessed great im-
pact and success in tradition network architecture and systems.
However, development of modern technologies may cause
the increase of complexity as well as diversity of network
transmission scenarios and protocols, which brought potential
challenges for protocol design, meaning that whilst tradition
CC may work well in a certain network, they cannot guar-
antee the exact same great performance in diverse scenarios
since these rule-based methods are mostly non-heuristics [20].
Additionally, even the varying traffic patterns may affect the
performance as well. Therefore, an intelligent CC algorithm



is recommended which is also known as learning-based con-
gestion control approach. Different from conservative CC
methods, learning-based schemes leverage network states in
real-time to control the sending rate rather the predetermined
policies, which in turn provides them the availability to cater
to dynamic network environments.

Recently, machine learning (ML) has made breakthroughs
in a variety of application areas, such as speech/pattern recog-
nition, computer vision, video games and robot control [15].
ML represents strong advantages in learning from collected
data or the environment and building models accordingly,
which is useful for producing an adaptive method in terms
of tradition network congestion control rules. For example,
conventional congestion control policies like TCP Reno only
take into consideration monotonous metrics, for example the
packet loss, acknowledgement (ACK) and/or Round-trip time
(RTT) as indicators of network congestion, in which way
the entire decision making process to adjust the sender’s
congestion window heavily relies on these measurements as
well as the predefined rules based on human understanding
of the existing network topologies. In addition to it, other
network problems could be happening by using loss-based
policy such as lower throughput due to longer RTT, slow
convergence and Bufferbloat. However, by using machine
learning/deep learning approaches, the agent would instead
have the ability to memorize data and learn from its past
experience. It thus has the capability to adjust the CWND
more intelligently through choosing approprate measurements
(e.g., combination of packet loss, ACK and RTT, etc.) to
achieve a better balance between high network throughput and
low latency. As the decision-making policy will be trained
through time; it would be responsive to the sudden changes
under complex and dynamic network environments [17]. Com-
pared with loss-based methods, the approach of Bottleneck
Bandwidth and Round-trip propagation time (BBR) could also
mitigate the problems (Bufferbloat) by introducing Bandwidth
of bottleneck link (BtIBw) together with Propagation delay
along the path (RTprop) as metrics for congestion indicators.
However, although BBR has the ability to significantly reduce
delay among networks, it will bring smaller throughput in
comparison with TCP Cubic under some certain scenarios. ML
methods would instead be able to address it by allowing agents
to make decisions with a trade-off between multiple elements
(e.g. throughput, delay, sending rate, etc.) in a dynamical
network environment.

All in all, the rule-based mechanism is more susceptible to
many unpredictable factors, resulting in poor performance in
a complex network scenario. ML/DL, on the other hand, aims
to construct algorithms or models in such a way that agents
can learn to make decisions directly from past experience
or the information from network environment. It does not
need accurate network models. Hence, it has the potential to
outperform the rule-based mechanism.
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Fig. 1. Throughput versus load There are 2 critical points in the congestion
figure. 1) knee: after this point throughput increases very slowly and delay
will be increased 1) cliff: when we reach this point, throughput reduces to
zero immediately (congestion collapse) and the delay goes to infinity [16]

C. Challenges

To apply ML approaches for controlling congestion, we
need to deal with different challenges. Some of these are
intrinsic characteristics about the CC problem, and the others
are directly related to solving CC problem with ML/DL. We
listed serveral potential challenges we may encounter in our
project as below:

1) Decrement Rule: What is the best Traffic Rate Decre-
ment rule in the presence of congestion [16]? This is the
main concern in the Congestion Control problem. Using
different parameters, e.g. initial window, packet loss or
delay, or different rules would lead to completely different
results. Here, we need to use the collected data and train
the ML network to decide about the Decrement rule of
the network.

2) ML Method: To solve the congestion control problem, a
proper ML technique should be found. In recent years
different ML techniques including online and offline
approaches have been developed to deal with the CC
problem [19]. Each of these methods has its own limi-
tations and advantages, meaning that one neural network
may perform well under one specific environment while
it may even get worse result than rule-based policy under
another scenario. Because of this, we need to find a proper
ML algorithm that much caters to our situation for the
project in a limited time.

3) Data Collection: The problem of learning a Neural
Network typically has relationship with the amount of
data as input. In order to leverage from Deep Neural
Network (DNN) we need to generate a proper and suffi-
cient amount of data so that we won’t get result such as
underfitting or overfitting [15]. To obtain data for CC,
we might need to generate synthetic data or use real
data, including vehicular, mobile networks, and satellite
communication.

4) Feature Selection: We need to investigate about proper
features that can be used to train ML models. In ML
models we need to extract features from data and pass
them to the model so as to train it properly. In addition,



we ought to choose the objective functions in which
the model tries to find the best accuracy to satisfy our
objective. From the literature review, usually throughput,
delay, loss rate, and congestion windows are used as the
objective functions. We need to find the proper features
as well as the objective functions (targets) to train the
model. In fact, we need to do some data pre-processing
and collect desired features.

5) Training Efficiency: Training efficiency is directly deter-
mined by deployment of environment. Traditionally, the
training process is regarded as a time/resource consuming
procedure where state abstraction plays an essential role
in training efficiency improvement. Parameter selection
would be another approach for optimization. However,
tackling this issue requires more research on the way for
completing this project.

6) Providing Test Bed: At the end, we need to apply the
proposed model on different datasets, including simulated
(or real data) to check how the model is successful to
improve its performance. We also will provide some
comparisons between the proposed model and current
models to assess the power of our model. However ML
techniques acquired lots of attention in CC problem, but
still these ML techniques not fully tested and developed
for real data sets [19]. We hope that we will be able to
run the ML algorithm on real data.

II. LITERATURE REVIEW

As illustrated before, the conservative rule-based policy
for congestion control indicates several limitations including
dynamic network environment adaptation, implicit signals as
indicator of network congestion, intrinsic problems of algo-
rithms whose performance are affected by network topology,
etc. Machine Learning-based control rules have been proposed
to address these potential issues under an end-to-end CC.
Generally speaking, there exist three subsets of ML approaches
for dealing with CC — supervised learning, unsupervised learn-
ing and reinforcement learning. Literature [8] has a complete
and detailed explanation as well as implementation regrading
ML-based learning approach with CC, where they use four
parameters as performance metrics for network congestion:
packet loss, RTT, throughput and fairness. Following the above
survey, we will firstly give out a demo to show how tradition
rule-based policy detects congestion and summarize the details
as well as potential issues about ML/DL-based algorithms
under different network scenarios respectively.

A. Conventional Rule-based Policy

One well-known and widely used implementation of rule-
based policy may be TCP Reno. Taking packet-loss as in-
dicator of congestion, TCP Reno controls the amount of
data flowing into network by adjusting congestion window
once it detects losses, where several phases are included
— slow start, congestion prevention, packet loss detection
as well as fast recovery as shown from figure 3. In slow
start, Reno increases its CWND exponentially until a thresh
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Fig. 2. TCP Reno Algorithm

value has been reached. Then it would additively increase
CWND to avoid congestion. Once a packet loss has been
detected, Reno would multiplicative decrease CWND (reset
threshold) for next transmission, and get into Fast recovery
phase which allows it again to increase CWND additively
until another loss has been detected. This approach provides
a linear methodology for controlling CWND size but would
cause severe bufferbloat problem in routers, resulting in high
latency through data transmission.

B. Learning-based algorithm

Learning-based algorithms are very useful because they can
be adopted to new network situation and they are much more
customizable than rule-based algorithms [11]. In general, we
have three different learning based algorithms that we will
introduce them in below.

1) Supervised Learning: Supervised learning is about
building a model between known input and output datasets,
and mapping following inputs to outputs correspondingly,
which is more commonly regarded as an explicit classifier
sorting input data according to their labels attached. Tradition
supervised learning algorithm involves decision trees together
with neural networks. Its application consist of traffic classi-
fication, loss classification and delay predication for gaining
better congestion control effect, which are explained separately
as below:

A Traffic Classification: Traffic policy plays an important
role in CC because it decides allocation of network
resources, and an optimal traffic classification method
can help achieve better network performance as well as
fairness. In order to apply supervised learning techniques
for traffic, the states of elements must be predefined (e.g.
[14] has defined packet-level/flow-level information). In
addition, high error rate is also a common issue within
such approach and a Naive Bayes Estimator could be used
for improving the accuracy [13]. Moreover, a Support
Vector Machine (SVM) [9] can be leveraged for reducing
the computation cost if the feature (dimension) of input
is sufficiently large.

B Loss Classification: Packet loss has always been uti-
lized as a signal of network congestion in tradition
CC algorithms (e.g. TCP Reno, Cubic). However, as
a matter of fact, the cause of loss not only results



from congestion, but may be affected by other factors
under different network scenarios (e.g. wireless networks,
optical burst switching networks, networks with reordered
events, satellite networks). Some uncertain factors may
cause losses in wireless networks. They could be erro-
neous links, mobility, channel conditions together with
interference in addition to congestion. To tackle this
problem, traditional classifiers such as Biaz, Spike and
ZigZag have been proposed for distinguishing the types of
losses. While they may work effectively in some specific
scenarios, an adaptive policy is still needed for a more
complex and dynamic network environment. To apply
supervised learning algorithms, delay information is the
kernel state where the features of input could be extracted
as RTT value, inter-packet times, inter-arrival time, queu-
ing delay, etc. Contention loss usually happens within
Optical Burst Switching network (OBS) which saves
sources due to wavelength reservation. And contention
loss happens because OBS lacks buffers. Supervised
learning approach is trying to address it by applying
Hidden Markov Model (HMM) [7] to distinguish between
contention/congestion losses. When it comes to networks
with multi-channel paths, then reordering loss may not be
avoided once packets are reordered. One characteristic for
reordering loss is the variant RTT value compared with
those related to congestion. And a Bayesian algorithm can
be used to distinguish between two types of losses with
considerable accuracy [3]. Although supervised learning
techniques show advantages in loss classification, there
are still challenges it faces for real implementation. One
is Misclassification where the performance of classifiers
mainly depends on predefined parameters, causing poor
congestion control to network if parameters are not set
properly in the beginning. Another is the balance between
computational complexity and prediction accuracy. Some-
times it consumes more network resources but brings
limited improvement for classification accuracy, because
of which we have to make a trade-off under different
network scenarios.

Delay Prediction: Delay of packet transmission can
directly reflect the total number of in-flight data (load)
through the network. Therefore it is an indispensable
factor we have to consider when designing a CC al-
gorithm. For learning-based policy, mechanism of delay
prediction has been proposed for senders to react quickly
to avoid network congestion in an efficient way. Multiple
metrics could be effective on predicting packet delay,
one of which is Round Trip Time (RTT) and another
is Retransmission Timeout (RTO). Moreover, some ap-
proaches could be leveraged on measuring RTT through
building the relationship between RTT and sending rate
using linear regression [2], Bayesian techniques, etc. In
order for Delay Prediction to achieve a great performance
in a real-time networks, low computational complexity as
well as high responsiveness should be guaranteed during
the process.

2) Unsupervised Learning: Different from supervised
learning, there’s no predefined labels in unsupervised learn-
ing and it sorts out input data according to the similarity
among samples so that both its intra-class gap of data will
be minimized and inter-class gap would be maximized to
the fullest extent. This machine learning approach is widely
used where there’s limited information about the networks.
Commonly used clustering methods include K-means, Hier-
archical Clustering, Density-based MeanShift, Density-based
DBSCAN, and Expectation Maximization (EM). Each of these
approaches represents different characteristics under different
situations. K-means is an easy-to-implement algorithm where
an unlabeled data is sorted to a sole cluster, but its result
could be highly affected by initial cluster center selection.
EM is more generally utilized for Gaussian Mixture Model
and its data point could be mapped into multiple clusters
instead of being restricted to only one type as K-means. But
the limitation is that its clustering performance depends on
the particular applications. Compared with AutoClass [18], K-
means and DBSCAN methods converge faster. While K-means
and AutoClass shows higher accuracy. However, DBSCAN
produces better clusters. For their applications in congestion
control, Loss Clustering and Delay Predication are two main
research fields.

A Loss Clustering: Similar to loss classification in super-
vised learning, Loss clustering will cluster data collected
by sender into congested losses and non-congested losses
(e.g. wireless/contention loss) according to extracted fea-
tures. In wireless networks, loss-delay pairs are used for
clustering because wireless losses present different delay
distribution than any other types, which could be captured
by Hidden Markov Model. In OBS, burst amount is able
to distinguish congestion/contention losses.

B Delay Prediction: Due to high processing demands for
delay calculation in networks, the availability of apply-
ing unsupervised learning-based CC algorithms on delay
prediction is limited. Some states have been listed for
data clustering such as message size, message validity
and message type, and by designing specific sending rate
for each cluster, the network congestion control could
therefore be achieved.

3) Reinforcement Learning: Reinforcement Learning (RL)
is considered to be another branch of Artificial Intelligence
(AD) together with ML, which learns through interaction with
environment and may not have strict restrictions on input data
scale. Essential elements in RL include agent (policy), state
(environment), and reward. Figure 3 depicts the reinforcement
paradigm. Agent plays as the brain of RL network and takes
an action. Then, based on taken action and the environment
(including all measures of the model, in our case packet
loss, delay, ...) we calculate the reward. Now, agent updates
its action based on the reward of previous action and the
environment.

To have a better understanding of RL, you can assume the
example of baby and mother. Baby is learning how to behave
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well under the mother’s supervision, and mother serve as a
mentor during his growth. Baby will be scolded when doing
something wrong (penalty) or get a sweet if he behaves well
(reward). According to feedback on his behaviors (action), he
was able to self-learn how to better interact with his surround-
ing environment gradually (agent/policy). Typically, there are
two schemes for implementing RL algorithm: value-based and
policy-based. In policy-based schemes, the agent would try to
figure out the best policy applicable for the actions. whilst in
value-based schemes, the agent would instead predict action
value straightly. In the methodology section, we will use the
actor-critic approach; here we introduce this algorithm. This
algorithm has been shown in the figure 4. Actor-critic method
has 2 main parts: Actor use current environment and take the
best action based on the current state. Critic plays evaluation
rule by taking environment state and the action; then return a
score that tells us how good is the chosen action. This score
is named Q-value and we re-train our actor model based on
Q-value score [6].

For its applications through network communication, RL
is widely used in scenarios like 5G and edge computing for
improving the overall quality-of-service (QoS). Different from
traditional approaches used in ML, RL outperforms them in
network through monitoring environment status continuously
and providing an optimized utility function for interaction the
next time, because of which RL algorithms are super adaptable
to dynamic environments. So far two trends are popular for

research in these areas. One is to ensure the reliability of data
transmission under some specific scenarios (e.g. data center,
cloud computing, etc.), and another is about designing a flex-
ible network topology for mobile networks. Moreover, most
implementations of RL algorithms are achieved by updating
Congestion Window (cwnd). As RL is more flexible than other
2 learning based approaches; we utilize this powerful model
in our method.

So far we have talked about conventional and learning-based
approaches to the CC problem. However, each of these al-
gorithms has their advantage and disadvantages. In the last
years, there has been a new endeavor to combine these two
schemes and benefit from both of them [1]. In table I some
of the advantages and disadvantages of each model have been
written [1], [11].

If we combine both conventional and learning-based algo-
rithms, we can benefit from both of the aforementioned mod-
els. this model is called a Hybrid model. In the methodology,
we introduce a hybrid model, that uses Reinforcement learning
in conjunction with conventional TCP algorithms.

III. METHODOLOGY

In this section, we introduce a state-of-the-art model for CC
named ORCA [1]. The optimal goal of the presented model is
to estimate cwnd in a way that we have the best performance.
In the congestion problem, we try to maximize the average
delivery packets (throughput) while we minimize the delay of
the network. In general, these two parameters (throughput and
delay) specify the performance of the CC algorithm.

In this paper [1], one lightweight network emulator tool
Mahimahi has been introduced to conduct the experiment
for measuring the network performance using DRL-based
approach. It focuses on testing real-life networks where numer-
ous transcontinental AWS/GENI servers should be deployed
and configured for cooperation. And it guarantees the effec-
tiveness of RL algorithm to be applicable into real-world prac-
tical use. However, most of its network environments are set up
upon the client-server model, which is monotonous and leaves
potential scalability problem when it comes to other types
of network topologies for applications. Furthermore, many
configuration issues should be addressed within its original
implementation. Thus to provide more convenience and flexi-
bility, we propose a methodology based on another commonly
used emulator Mininet (more powerful than Mahimahi) to
test our methodology together with the result. In addition to
that, we utilize Vagrant for environment setup to ensure ease-
of-use and user-friendliness. That being said, we keep part

TABLE 1
COMPARISON BETWEEN CONVENTIONAL AND LEARNING-BASED MODELS

Conventional CC Learning-based CC

reliable
fast and real-time

capturing the net’s dynamic

advantage data-based

convergence issues

disadvantage is not real-time

not adjustable to a new net
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of the architecture as origin and provide a flexible Mininet
interface capable of measuring DRL-based CC performance
on various network topologies. Also, we test the feasibility of
our approach by parameter tuning to adapt the model for the
input data we generate.

A. Model pipeline

In this section we talk about how DRL updates its param-
eters. Figure 5 helps us to have a better understanding about
what is the DRL method, how it gets information from its
environment, and how it connects to the conventional TCP
controller. Here we proposed our model pipeline design by
separating the learning agent and actor agent apart. Some
concepts including Actor, Global Memory, Learning Machine,
etc. are introduced as following.

1) Actor: Actors are recognized as action generators. They
are deployed on hosts one for each, and playing the roles
of producing the action which helps maximize its reward
function using updated policies from learning model. It
obtains the real-time states from TCP monitor and passes
the optimized actions to traffic generator for execution
where these two modules are running in kernel mode.
After an action has been performed, a new network state
s’ will be thereby yielded, and the reward could be
calculated through r = (s, a) after action execution. So
far the actor agent has got an experience tuple e = (s, a,
1, s’) which is supposed to be stored in Local Experience
Buffer on its host and would be synchronized on the
shared memory on learning machine for training.

2) Kernel/Topo: Two modules are running in the kernel
mode which includes the TCP monitor and the traffic
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Fig. 6. Dumbbell Topology

generator. Moreover in the Topo module, Mininet nodes
are created with predefined topology with which we wish
to test the effectiveness of RL-based TCP CC algorithms.
That being said, the traffic generator executes the action
and yields flows interacting with other nodes in Mininet
(by adjusting cwnd to send out packets and receive the
ACKSs), and monitor samples data to produce the observed
states in real time. All these modules work cooperatively
to control flows in the low-level design.

Learning Machine: Learning machine is the agent that
holds the RL learner for updating the policies globally.
Here policy is defined as a mapping from state to action,
which exhibits various optimized choices to control the
flow under different network scenarios. Learning machine
should guarantee a considerable large memory which is
used for storing all the experience tuples coming from
different hosts as Global Replay Memory Buffer. And
learner would fetch and train the parameters to yield op-
timized policies which they will later send back to all the
running hosts. And threads synchronization mechanism
should be guaranteed on learning machine to deal with
potential issues caused by distribution architecture.

3

~

Based on the details explained above, we can conclude
that each actor implements RL-based CC algorithm under a
specific-designed network. Using this distributed architecture,
we could not only test our model performance with different
network topologies, but also guarantee the efficiency as well as
the effectiveness of training multiple models simultaneously.

B. Network Topology

As we previously mentioned, a client-server model has been
used to measure the overall performance of RL-based CC
algorithm in [1], and in this project, we try to extend its
scalability as well as versatility by designing an architecture
that provides an easy-to-use interface based on Mininet for
building diverse network topologies. And a network evaluation
scheme should be set up at this time through the monitor
block. As is widely acknowledged, numerous topologies exist
for establishing the real-world network where each exhibits
its own advantages/disadvantages. In this project, we only use



TABLE II
CONFIGURATION OF MACHINE USED TO TRAIN THE RL MODEL

Linux version | CPU | GPU | RAM
Ubuntu 20. ‘ core i7, 7700 ‘ GeForce 1060 ‘ 16 Gig

the dumbbell topology to train and test the network. However,
we can extend the model by using multi-actors and assigning
each actor to one topology. The other important topologies
that we might extend our model to them; are introduced in
the Appendix section.

Dumbbell Topology: Dumbbell Topo is more utilized in
places where two agents try to make connections through
world-wide internet. For instance, just imagine that you’re
outside for a business trip and want to connect your company
network in a secure way. Then it is likely that you are supposed
to establish VPN (Virtual Private Network) connection using
WLAN (Wireless Local Area Network). The gateway server
plays the role as NAT during the process. In our architecture,
we plan to apply the RL-based model on two gateway hosts
(routers) and explore their stability as well as the capability
of dealing with high-concurrency problems.

IV. EMPIRICAL RESULTS

The goal of the RL method is to benefit from the presented
Mininet emulator to generate enough data and apply synthetic
data to the complex RL network to capture the dynamic of
data. In the empirical section, at first, we talk about training
configuration and the scenario that we used to test the RL
method and baseline method. After it, we will talk about the
metrics that we used to assess the model. In the end, the
empirical results have been presented.

A. Training

Through training; as the training of the RL method is time
and resource-consuming (for example in ORCA model it uses
48 CPU cores, in the combination with 256 GB RAM and
GPU RTX 2080 TI); we needed to decrease the number of
actors of the RL model and make the RL model much simpler
than original models. the configuration of the machine that is
used for training is shown in table II. For the training session,
we only use an actor that can not lead to a robust result (In the
ideal case, we need to train the RL model with more actors
but it takes more time and needs more resources).

The other imporant aspects in training the RL model is
related to chosen input signals. Based on [1] we use statistics
in table III as input of the model. In the implementation, we
used a third-party toolbox, Goben, to capture these statistics.

To assess the performance of the RL model, we use TCP
cubic as the underlying model for comparing the results of our
simulation to it. TCP cubic is used as default in Linux and we
can easily use TCP cubic to evaluate the RL model.

B. Scenario

We use the dumbbell topology (with three senders; three
receivers and two routers) to test the model. figure 7 and 8
illustrate the test scenario.

TABLE III
STATISTICS THAT ARE USED BY THE RL TO TAKE A NEW ACTION

statistic description

thr the avg of delivery rate (throughput)

l the avg of loss rate

d the avg of delay

n the number of valid ACK

m the time between the last and current report
sRTT the smooth RTT of packets so far

cwnd,, the current congestion window

thrmaz the max value of delivery rate so far

the maximum value of packet so far
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Fig. 7. Dumbbell Topology that is used for test the RL model
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The capacity of the link between 2 routers is similar to
sending bandwidth of each senders, for exampel in the first
hour is 10 MB/s, in the second hour is 100 Mb/s, and in the
last part is 1000 Mb/s. We run this scenario for 3 hours. This
180-minute is divided into 3 parts and each of these three-
part has its own characteristic for senders (the bandwidth of
senders will change every 60 minutes).

To collect the parameters to assess the models, after each 1
sec, we capture the value for buffer usage and throughput. We
use these two as evaluation parameters of the model. These

Bandwdith of senders through time
1000 |

Bandwidth (Mbit)
B
o
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Fig. 8. Senders bandwidth for 180 minutes of test data. in the first 60 minutes,
senders 30 MB/s; the second part, 300 Mb/s. In the third part total, sender’s
bandwidth will be 3,000 Mb/s a



TABLE IV
THROUGHPUT RESULTS COMPARISON OF RESULTS FOR BASELINE AND
RL TCP. TCP CUBIC HAS BETTER RESULTS THAN THE RL MODEL

V. CONCLUSION

In this project, we benefit from a new trending Machine

total (0-180 min) 1earning algorithm to let the model capture the dynamic of

data. This data-driven model (in comparison with model-

based (parameter-based) models) helps us to tune the model

0-60 min 60-120 min | 120-180 min

mean (std) mean (std) mean (std) mean (std)
TCP cubic | 0.81 (0.05) | 0.94 (0.02) 0.99 (0.01) 0.91 (0.03)
TCP RL 0.78 (.08) 0.89 (.05) 0.97 (0.015) 0.88 (0.05)

Evaluation parameters are used as input for the metric.

C. Metric

In CC problem, the optimal goal is to increase throughput
and decrease the buffer usage (low latency). However, reach
to these two goals is kind of paradoxical but in this research,
we use these two parameters as our matrices. So the metrics
are

1) Bandwidth
2) Buffer Usage

To assess easily the results; all metrics are normalized between
0 and 1. For example, if buffer size=0 means that the buffer is
completely empty and if buffer size=1 means that the buffer
is full. This normalization helps to easily compare the results
of the baseline model and TCP RL model to each other.

D. Results

In this section, we provided results of running both baselines
(TCP cubic) and TCP RL for the scenario we described before.
At first, we present results for the throughput. Table IV shows
the results for the throughput metric. As we mentioned before,
every 1 sec we capture the throughput. In the table, the mean
and standard deviation is calculated by the captured throughput
in the mentioned time (more detailed results for bandwidth
and queue usage are presented in figures 12, and 13 in the
Appendix).

With tuning RL parameter, we got better results for RL TCP
in comparison to the previous report. Now, the results of TCP
RL are comparable to TCP cubic. Secondly, the results for
buffer usage have been shown in the table V.

However in the buffer usage table, one can see buffer
usage for the RL model is less than TCP cubic. However,
this different is not very distinguishable and we can say both
models act similarly to each other. For BW metric, TCP cubic
a little better than RL; and in the buffer usage, RL is a little
better. As you see, when we tune the RL parameters; it leads
to better results. To make the RL model scalable we need
to train it by using more actors and benefiting from different
topologies.

TABLE V
BUFFER USAGE RESULTS COMPARISON OF RESULTS FOR BASELINE AND
RL TCP. IT SEEMS THAT RL MODEL HAS A BETTER BUFFER USAGE

0-20 min 20-40 min 40-60 min total (0-60 min)

mean (std) mean (std) mean (std) mean (std)
TCP cubic | 0.78 (0.24) | 0.66 (0.28) | 0.59 (0.18) 0.68 (0.23)
TCP RL 0.71 (.35) 0.69 (.18) 0.14 (0.105) | 0.64 (0.22)

based on each data environment. Also, we use Mininet as the
emulator that helps us to generate as much as data in a control-
based environment. For training DNN models; sufficient data
plays a very crucial role and using such an emulator provides
numerous data sets. In addition, the most benefit of RL is
learning through time; as time goes on; based on new data sets;
RL agent becomes more robust and produces better results. In
below; we mention some of the future works that we can do
to improve this research:

1) More sophisticated RL method In this research, because
of a lack of time and resources, we reduce the complexity
of the RL model; however, in Deep Learning models; we
will benefit from them by creating a large amount of data
and complex network. Then, the DNN model will be able
to capture hidden features of the data and lead to better
results.

2) Using multi-actor: By increasing number of actors; we
will have more robust results.

3) Exploring other reward functions: In the RL model; the
goal is to train the agent to have the best policy and this
policy is based on the definition of reward. Therefore; the
definition of reward is the most crucial aspect of the RL
model. We can add more metrics to the reward function
and it might lead to better results.

4) Comparision with other DNN models: Comparing this
RL model with other DNN models helps to understand
how powerful is this in the domain of data-driven models.

5) More emulators: Using other emulators like NS2, and
NS3 helps us to provide more synthetic data. If the RL
method is trained with different kinds of data sets; it helps
to have a more robust result. In training sessions using
more emulators; will lead to better training and therefore
better performance. Also, replicating results with different
emulators; makes us confident about the sturdiness of the
model.

6) Chnage Input space: Using different sets of statistics
as features (environment in the RL terminology). Input
features provide the most crucial role in learning of ML
method. Using a different set of features might lead to
better policy and therefore better results.

7) Hyper-parameter tuning: Tuning of DNN models is
very important and has lots of effects on the final result.
Tuning is somehow a trial-and-error process; it takes time
to reach the proper hyper-parameter and we have not
addressed tuning parameters in this work

8) Multiple Topology for training: if we use different
actors and assign them to different topologies; it will
lead to better results. Foe example, we can use 3 more
actors for the star, the mesh, and the three topologies.
More information about these three topologies has been



described in the Appendix section.

In the end, we acknowledge that training the RL network for
TCP CC is a challenging task and might be bigger than the
scope of the project of the course. However, we try to do
our best, and during this time we changed multiple time the
modeling to run the TCP RL. We might need more time to
explore this domain. We expect to continue this interesting
work even after the semester (when we have more time) to
find more robust results.

A. Statement of Work

In this project Yihao Cai and Reza Saadati Fard collaborated
with each other. However, after the intermediate 2 report and
the class presentation, Reza Saadati Fard withdrew from the
course and stopped his collaboration.
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APPENDIX

A) Topology:
Here we introduce other topologies that we can use in the
multi-actor model that is presented in the paper.

1) Star Topology: This topology (as Figure 9) is regarded
as one of the most common network setups. In the
architecture, each peripheral host is connected to one
centralized device, and typically it is identified as multi-
client to one-server model where hosts act like clients
while central device performs as a server. Star Topo
holds the characteristics of: Centralized management of
the network, ease of scalability and disaster recovery
capability. In our proposed method, we intend to set
up several connected hosts, apply our optimized RL
algorithm to the centralized device and take some of the
performance metrics (throughput, packet loss, burstiness
and fairness, ) for evaluating the real-time effect.

2) Mesh Topology: Unlike the previous two Topos, there’s
no specific agent that works for all the other network
devices in mesh topology. Each host severs as a sole point
on its own where every single node must connect at least
two other nodes. Mesh topology provides the users with
considerable reliability, but it lacks enough flexibility for
maintenance and what’s more, such design is also of high
cost. In our proposed example test, we decide to run
up six hosts under local mesh topology and randomly
choose one of them as the agent running the RL-based
congestion control algorithm to observe its effect on the
overall network performance (QoS).

3) Tree Topology: Similar to Mesh Topo, no centralized
process device shows up in Tree topology and each host
connects to each other with shape of the structure being as
an upside down tree (forest). Additionally, it is regarded
as the combination of Bus Topo and Star Topo, and is
also usually implemented in Data Center network. Tree
Topo holds the advantages at its robustness for fault
segmentation — the other nodes in a Tree Topo will not be
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Fig. 9. Star Topology

Fig. 10. Mesh Topology

Host1

Fig. 11. Tree Topology

affected if one of the nodes gets down. Furthermore, its
extensible characteristic makes the network maintainable
and callable. For simplicity and usability, we decide to
set the top device as the intelligent CC host to valid the
algorithm’s impact on overall network devices.
if we include these topologies in the training section, it can
lead to more robust model. In the future; we will try to use
multi-actor topology for training the model and it can lead to
a better model.

B) Results: Here, we present our results for Bandwidth
and Queue usage in detail. As we mentioned, we have three
different parts and each part is 1 hour. We also run the RL
TCP and TCP cubic for sneders with BW 10, 100, and 1000
Mbps. Figure 12 shows the results of these three tests for BW
usage. In figure 13 we depict results for the queue usage. In
the results section of the paper; we take the mean and standard
deviation of theses data and put them into tables IV and V to
make them easier to read.
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