
Occlusion-Free Visual Servoing for the Shared
Autonomy Teleoperation of Dual-Arm Robots

Overview

• Background = Teleoperation becomes popular (especially during Covid periods) and we try to
innovate among interdisciplinary fields regarding robot and teleoperation (e.g. tele-nursing robot)

• Research Purposes = Design useful interfaces applicable for tele-nursing robot which help
improve user’s performance during teleoperation (easy-to-use, decrease workload, etc.)

• Challenges =
• 1. Visual Sensing (loss of depth via 2D image and camera views are limited)
• 2. Haptic Sensing (Non-haptic feedbacks from robot via remote control)
• 3. Motion Control (Need efficient motion planning algorithms to avoid sickness)

Research Question
how to use the eye-in-hand camera to provide autonomous
occlusion-free viewpoint for the remote user to observe the
task performed by another manipulator in a teleoperation
system?

• Autonomous continuous camera positioning to avoid
occlusions and obstacle collision

• Teleoperated TCP (Tool Center Point) and user-selected
goal visible at all times in the camera FoV

• Natural and intuitive camera motion and reference
mapping of the manipulator in the camera frame.

Objective

Kinova Model

Unity Environment Setup

Manipulator
Arm

Camera
Arm

Target
Object

Obstacle

View from
Camera Arm

IBVS (Image based visual servoing)

IBVS Control Law:

tool Jacobian in F

rotation matrix from world
to camera frametool translational velocity wrt Fc

null space projectorjoint ref vector
for controller

Pt pseudoinverse

arm joint
velocities

robot camera
joint velocities

Camera Arm Joint Velocity 2D Image Pixel Velocity
Mappings

Camera Model

Camera Parameters

Camera Capture Resolution: 2064 x 2096 (Width x Height)

1.1111 0 0.5

0 1.0941 0.5

0 0 1

Camera Intrinsic Matrix:

Camera Extrinsic Matrix: By Implementing Camera API worldToCameraMatrix

Finite State Machine

SS - Setup State:
 System starting state

SA - Approach State:
 Approaching to goal, camera zoom in the scene

SO - Occlusion State:
 Camera moves smoothly to avoid occlusion

SC - Conclusion State:
 Free for user to reach the goal with TCP

Setup State: Ss

Cost function regulates the TCP and the COM of the goal to reference points on the image

Approach State: Sa

In this state, operator uses teleoperation to move the tool manipulator arm TCP toward
the goal object.

Cost function regulates the TCP and the COM of the goal to reference points on the image,
as well as the fix the camera rotation in z axis to its initial state.

Conclusion State: Sc

In this state, the TCP of the manipulator arm is close enough to the goal, and the goal
object in the image is big enough.

Calculate the area of a triangle

Occlusion State: So

In this state, in order to give more flexibility to camera arm, we release the regulation of
position of TCP and goal. Instead we regulate their velocity on the image.

Oculus Quest 2 VR HMD Mapping

Teleoperating Switch (On/Off)

Gripper (On/Off)

Last Joint

Next Joint

Joint Velocity/Position

Oculus Headset Oculus Controller

View presence from
camera in Camera Arm

ROS message
transmission trigger

Overall Grasping Process

IBVS Unity-ROS Framework

Oculus

Manipulator Arm

Camera Arm

Sensors

Monitoring
(View Capture)

Receiver

ROS nodes

Optimizer
Data Processing

State - SO

State - SS

State - SA

State - SC

Updated msg
(Position of TCP, Obstacle, Object,

Velocity of Manipulator, ……)

Control Parameters
(Velocity of each joint, ……)

Physical
Devices

Matlab Engine

Matlab Core

Unity3D

Matlab

IBVS Control

Conclusion (Intellectual Merits)
1). This project has both Linux version and Windows version implementation
2). Oculus is one example of VR HMD manipulation for remote scene telepresence where the
system also provides interfaces used for designing other similar VR devices as the hardware part
3). A framework has been created in this project where Kinova arm is utilized but it also works for
other robot models with certain DH parameters given
4). Unity built-in camera can be replaced with any real camera, and Computer Vision techniques
must be implemented for object recognition
5). Kinova Model could be combined with physical robot arms using hardware driver under both
Linux/Windows environment

Limitations
1). Because WSL is used under Windows OS, there could be accident errors happening due to
WSL limitations itself (e.g. Lack of package dependency, hardware driver problem, etc.)
2). The obstacle mapping to the 2D image must be in a convex geometric shape rather than
concave one
3). The robustness of optimization hasn’t been proved yet, because of which the optimized data
may not be applicable under some specific situations

