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Problem Definition
Evaluation
Q1. Why we need network congestion control (CC) ?
1). Fully leverage network resources (e.g. reduce transmission latency; increase data throughput)
2). Ensure the network QoS (e.g. avoid unnecessary packet-loss and provide reliable service)
Q2. Why we use Machine-learning (ML) based approach?
Traditional network CC schemes are rule-based ———  Static and Rigid
Machine-learning CC schemes are data-based = ———  Dynamic and Flexible
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Supervised Learning

Make a mapping between Input and Output as much
precise as possible
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Unsupervised Learning

Classify data with respect to their similarities (diverse
dimensionality)
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Evaluation

Help agent decide action to take that could help it gain

Reinforcement Learning (RL) the most rewards during interaction with environment
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RLIin CC

Less sample/input data required

Why Reinforcement-Learning ? ) { Provide long-term benefit strategy

Suitable for environment interaction

Proposed Method:

* Main idea comes from = “Classic Meets Modern: a Pragmatic Learning-Based Congestion Control for the
Internet” (https://doi.orq/10.1145/3387514.3405892)

* Project Goal =
Build a robust RL-based framework for End-to-end network congestion control

Extend its availability by introducing various network Topos using Mininet interface


https://doi.org/10.1145/3387514.3405892
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RLin CC

« Evaluation Metrics:
Network latency
Throughput
Robustness
Fairness
Real-time Efficiency
TCP Friendiness (Not penalizing other flows)

* Potential Challenges = (Intrinsic RL Problems)

o Improper feature/reward function selection would cause bad performance/behavior
o Large action space makes model hard to converge, impacting the real-time efficiency
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0,
1). Dumbbell Topology = = 2). Tree Topology
3). Star Topology jm § | 4). Mesh Topology |




RLin CC— Dumbbell Topo

Scenario

Web fetching (Inbound/outbound traffic)

Characteristics

Commonly-used network topology

Centralized management and control

Experiment

make two gateway devices the RL actors to see whether they
outperform traditional CC method through some metrics (RTT,

Throughput, Fairness, etc.)
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= RL Actor =
Host1-1 /\ Host2-1
jm | S S I}
Host]-2 Router1 Router2 Host2-2

Host1-3

Dumbbell Topology

Host2-3



RL in CC — Model Architecture

Host = Actor + Traffic in Kernel

* Actor = Action Generator
Sync policy from learning agent
Update experience tuple e (param)

e Kernel

TCP socket for executing actions (change
cwnd/slowing sending rate per time)

Monitor block for state observation

Learning Agent = RMS + Learner
* RMS = Replay Memory Space
Store tuples for all RL-based actors
Split data/send to learner for training
®* Learner=

Generate policies for distributed host
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Model Evaluation — Train config

* Training:
5 actors in RL
Using Dumbbell topology in the training

* Model Input:
Throughput
loss packet
Delay
Number of valid ACK
RTT
CWND

R = z throughput; — delay;

i

e Hardware: 0s | CPU | GPU | RAM

Linux 22.0.4 | Intel Corei7-7700

Geforce 1060 ‘ 16 GB
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Model Evaluation - Testing Scenario
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Evaluation

* Three metrics for evaluation:
1. Bandwidth
2. Buffer usage
3. Robustness

* Model buttle neck is 15 Mbit/s
* The worst case situation, senders send 30 Mbit/s

Goal is to maximize bandwidth and in the meanwhile minimize the delay (lower usage of the buffer

capacity)

* Underlying method:
TCP Cubic



Model Evaluation — Results
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0-20 min 20-40 min 40-60 min Total
Mean+std Mean+std Mean+std Mean+std
TCP Cubic 0.309 + 0.23 0.352 + 0.19 0.482+ 0.12 0.381+0.18
TCP RL 0.2124+ 0.461 | 0.209+0.51 0.4824+0.39 0.218+ 0.472
* Buffer usage Results:
0-20 min 20-40 min 40-60 min Total
Mean+std Mean+std Mean+std Mean+std
TCP Cubic 0.981+0.02 0.975 4+ 0.015 | 0.923+ 0.061 | 0.956+ 0.032
TCP RL 0.824+0.132 0.761+ 0.144 | 0.729+ 0.105 | 0.771+ 0.127
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Some of the following suggestions can help to deal with lack of robustness in current RL CC
model

1. Benefiting Multi-actor advantages of RL
2. Exploring other Reward Function

3. Hyper-parameter tuning

4. Comparison with other DNN CC methods
5. Using other emulators

6. More sophisticated RL method






Star Topology =

Scenario = Reverse Proxy/Gateway (e.g. Nginx)

Host1 Host6

Advantages = 1). Easy fault detection; 2). Scalable and
extensible; 3). Less expensive(one 1/O port per host) L

Potential Issue = 1). SPOF (Single Point of Failure) Issue; L — L],
2). Network High Concurrency Problem e i
Experiment = set central node to be the RL actor. High =

Host3 Host4

concurrency should be mitigated by cutting down cwnd

i : - Star Topol
(and/or sending rate) using RL algorithm tar lopology
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