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Problem Definition 

Data-based CC ApproachRule-based CC Approach

X

Q1. Why we need network congestion control (CC) ?

1). Fully leverage network resources (e.g. reduce transmission latency; increase data throughput)

2). Ensure the network QoS (e.g. avoid unnecessary packet-loss and provide reliable service)

Q2. Why we use Machine-learning (ML) based approach?

Traditional network CC schemes are rule-based Static and Rigid

Machine-learning CC schemes are data-based Dynamic and Flexible

Introduction 

Methodology

Evaluation



Introduction – DNN net 

Supervised Learning

Make a mapping between Input and Output as much 
precise as possible
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Unsupervised Learning

Classify data with respect to their similarities (diverse 
dimensionality)



Introduction – DNN net 

Reinforcement Learning (RL)
Help agent decide action to take that could help it gain 
the most rewards during interaction with environment
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RL in CC

Why Reinforcement-Learning ? 

Less sample/input data required

Provide long-term benefit strategy

Suitable for environment interaction

Proposed Method:

• Main idea comes from = “Classic Meets Modern: a Pragmatic Learning-Based Congestion Control for the 
Internet” (https://doi.org/10.1145/3387514.3405892)

• Project Goal =

Build a robust RL-based framework for End-to-end network congestion control

Extend its availability by introducing various network Topos using Mininet interface
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https://doi.org/10.1145/3387514.3405892


• Evaluation Metrics:
Network latency
Throughput
Robustness
Fairness
Real-time Efficiency
TCP Friendiness (Not penalizing other flows)

• Potential Challenges = (Intrinsic RL Problems)

• Improper feature/reward function selection would cause bad performance/behavior

• Large action space makes model hard to converge, impacting the real-time efficiency

RL in CC
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RL in CC – Implemented Topo in Mininet

1). Dumbbell Topology

4). Mesh Topology
3). Star Topology

2). Tree Topology
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RL in CC – Dumbbell Topo  

RL Actor

• Scenario
Web fetching (Inbound/outbound traffic)

• Characteristics
Commonly-used network topology

Centralized management and control

• Experiment
make two gateway devices the RL actors to see whether they 
outperform traditional CC method through some metrics (RTT, 
Throughput, Fairness, etc.)

Dumbbell Topology
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RL in CC – Model Architecture 

Dumbbell 
Topo

Star Topo

Mesh TopoHost = Actor + Traffic in Kernel

• Actor = Action Generator

Sync policy from learning agent

Update experience tuple e (param)

• Kernel

TCP socket for executing actions (change 
cwnd/slowing sending rate per time)

Monitor block for state observation

Learning Agent = RMS + Learner

• RMS = Replay Memory Space

Store tuples for all RL-based actors

Split data/send to learner for training

• Learner =

Generate policies for distributed host
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Interaction with other nodes under pre-defined topology



Model Evaluation – Train config  

• Training: 
5 actors in RL 
Using Dumbbell topology in the training 

• Model Input: 
Throughput 
loss packet
Delay 
Number of valid ACK
RTT 
CWND

𝑅 = ෍

𝑖

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑖 − 𝑑𝑒𝑙𝑎𝑦𝑖

• Hardware: OS CPU GPU RAM

Linux 22.0.4 Intel Corei7-7700 Geforce 1060 16 GB
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Model Evaluation - Testing Scenario 
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Model Evaluation - Metric  

• Three metrics for evaluation: 
1. Bandwidth 
2. Buffer usage
3. Robustness 

• Model buttle neck is 15 Mbit/s 
• The worst case situation, senders send 30 Mbit/s  

Goal is to maximize bandwidth and in the meanwhile minimize the delay (lower usage of the buffer 
capacity)

• Underlying method: 
TCP Cubic 
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Model Evaluation – Results   

• Alll results are normalized between 0 and 1 (0 is empty and 1 is full)

• Throughput Results: 

• Buffer usage Results: 

0-20 min 
Mean±std

20-40 min 
Mean±std

40-60 min 
Mean±std

Total
Mean±std

TCP Cubic 0.981±0.02 0.975 ± 0.015 0.923± 0.061 0.956± 0.032

TCP RL 0.824±0.132 0.761± 0.144 0.729± 0.105 0.771± 0.127

0-20 min 
Mean±std

20-40 min 
Mean±std

40-60 min 
Mean±std

Total
Mean±std

TCP Cubic 0.309 ± 0.23 0.352 ± 0.19 0.482± 0.12 0.381±0.18 

TCP RL 0.212± 0.461 0.209±0.51 0.482±0.39 0.218± 0.472
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Future Steps 

1. Benefiting Multi-actor advantages of RL 

2. Exploring other Reward Function 

3. Hyper-parameter tuning 

4. Comparison with other DNN CC methods

5. Using other emulators 

6. More sophisticated RL method 
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Some of the following suggestions can help to deal with lack of robustness in current RL CC 
model 



Thank You!



Star Topology = 
• Scenario = Reverse Proxy/Gateway (e.g. Nginx)

• Advantages = 1). Easy fault detection; 2). Scalable and 
extensible; 3). Less expensive(one I/O port per host)

• Potential Issue = 1). SPOF (Single Point of Failure) Issue; 
2). Network High Concurrency Problem

• Experiment = set central node to be the RL actor. High 
concurrency should be mitigated by cutting down cwnd
(and/or sending rate) using RL algorithm

Star Topology

RL Actor
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