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Abstract— This paper presents a runtime learning framework
for quadruped robots, enabling them to learn and adapt
safely in dynamic wild environments. The framework integrates
sensing, navigation, and control, forming a closed-loop system
for the robot. The core novelty of this framework lies in two
interactive and complementary components within the control
module: the high-performance (HP)-Student and the high-
assurance (HA)-Teacher. HP-Student is a deep reinforcement
learning (DRL) agent that engages in self-learning and teaching-
to-learn to develop a safe and high-performance action policy.
HA-Teacher is a simplified yet verifiable physics-model-based
controller, with the role of teaching HP-Student about safety
while providing a backup for the robot’s safe locomotion. HA-
Teacher is innovative due to its real-time physics model, real-
time action policy, and real-time control goals, all tailored to
respond effectively to real-time wild environments, ensuring
safety. The framework also includes a coordinator who effec-
tively manages the interaction between HP-Student and HA-
Teacher. Experiments involving a Unitree Go2 robot in Nvidia
Isaac Gym and comparisons with state-of-the-art safe DRLs
demonstrate the effectiveness of the proposed runtime learning
framework. The corresponding open source code is available at
github.com/Charlescai123/isaac-runtime-go2.

I. INTRODUCTION

Quadruped robots have become a promising solution for
navigating challenging wild environments, such as forests,
disaster zones, and mountainous regions [1], [2]. These
robots are specifically designed to traverse unstructured
terrains, slopes, and dynamic obstacles while maintaining
stability and operational efficiency [3]. A typical example
is their use in search and rescue tasks, where they assist
in locating and aiding victims during earthquakes, building
collapses, and other hazardous situations [4].

A. Challenge and Open Problem

Deep reinforcement learning (DRL) has demonstrated con-
siderable success in developing action policies that facilitate
agile and efficient locomotion in quadruped robots [5]–[7].
However, quadruped robots are typical safety-critical au-
tonomous systems. A fundamental safety challenge emerges
when implementing DRL-enabled locomotion strategies for
quadruped robots in wild environments, detailed below.
Challenge: Dynamic Wild Environments. The quadruped
robots have dynamics-environments interactions, meaning
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their behavior and performance depend significantly on the
terrains they traverse, such as flat ground versus uneven sur-
faces, and sandy terrain versus icy conditions. Furthermore,
real-time wild environments are often unpredictable and can
change unexpectedly, such as during freezing rain [8]. These
variations can create a domain gap for the trained locomotion
policies, making it difficult for quadruped robots to operate
safely and effectively in such environments. Therefore, it is
essential to ensure that quadruped robots are resilient to these
domain gaps, particularly those arising from dynamic and
unpredictable wild environments.

An appealing prospect for addressing the aforementioned
safety challenge is the DRL agent’s runtime learning for
adaptive action policies in wild environments. However, the
open problems are If the DRL agent’s actions lead to a
safety violation, how can we correct its unsafe learning and
guarantee robot’s safety in a timely manner? How to adapt
to dynamic wild environments for assuring safety? Before
presenting our approach to addressing them, we first review
the existing related work.

B. Related Work

DRL-enabled Locomotion. Current DRL frameworks for
quadruped robots typically involve pre-training locomotion
policies in a source domain, such as a simulator, and then
transferring these policies to a target domain, like the real
world. The techniques used for addressing domain gaps dur-
ing this transfer include zero-shot deployment [5], [9], fine-
tuning [10], and domain randomization [11], etc. However,
these methods do not enable DRL’s safe runtime learning in
dynamic environments to have continuously adaptive DRL
models after deployment. Consequently, they often struggle
to handle unexpected environmental variations post-transfer.
This limitation poses safety challenges, particularly in un-
predictable wild environments that differ significantly from
the training conditions in the source domain.

Fault-tolerant DRL. Recent approaches include neural
Simplex [12] and runtime assurance [13]–[15]. They treat the
DRL agent as a high-performance module (HPM) but a black
box that runs in parallel with a verified high-assurance mod-
ule (HAM). Normally, HPM controls the real plants. HAM
takes over once safety violation occurs. These architectures
can ensure the safe running of DRL in real plants under the
assumption that the real-time wild environments do not cause
HAM to fail, which is not practical for quadruped robots in
dynamic and unpredictable wild environments. Specifically,
HAM is the static model-based controller, and its action will
be unreliable if the real-time wild environments create a
significant model mismatch for HAM design.

https://github.com/Charlescai123/isaac-runtime-go2
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Fig. 1: Runtime Learning Framework: A seamless integration of perception, planning, learning, and control.
The sensing module outputs both proprioceptive and exteroceptive data from the robot operating in wild environments. The
navigation module constructs a Bird’s-Eye View (BEV) map by filtering Regions of Interest, generates an occupancy map
using height thresholding, and computes the cost map with the Fast Marching method. Based on the cost map, a planner
generates reference commands for the locomotion controller while also providing visual observations for the HP-Student.
In the locomotion control module, the coordinator manages the interaction between the HA-Teacher and the HP-Student to
ensure the robot’s safety. This setup allows the HP-Student to learn from the HA-Teacher through aHA while also engaging
in self-learning by aHP to develop a safe and high-performance action policy.

C. Contribution: Runtime Learning Framework

To address the aforementioned safety challenge associated
with the quadruped robots operating in dynamic wild en-
vironments, we introduce our runtime learning framework
shown in fig. 1, which integrate perception, planning, learn-
ing, and control. This framework enables quadruped robots
to autonomously navigate and safely learn in real-time wild
environments. Beyond addressing these safety concerns, this
framework also tackles fundamental open problems in DRL-
enabled locomotion and fault-tolerant DRL. Its core novelties
are outlined as below:

• HP-Student – a DRL agent, which performs both self-
learning and learning-from-HA-Teacher for robots op-
erating in real-time wild environments, targeting a safe
and high-performance action policy.

• HA-Teacher – a simplified yet verifiable controller
based on physics models, designed solely to ensure
safety. Its mission is to teach HP-Student about safe
policies while backing up the robot’s safe control.
HA-Teacher utilizes a real-time physics model, real-
time action, and real-time control goals, all tailored to
respond effectively to complex and dynamic environ-
ments, ensuring robot’s runtime safety.

The interaction between HP-Student and HA-Teacher op-
erates as follows: When the real-time status of the robot
controlled by HP-Student approaches the safety boundary,
HA-Teacher intervenes to enforce the robot’s safe control.
During this period, HP-Student will learn from the HA-
Teacher regarding the safe action policies (i.e., teaching-to-
learn). Once the robot’s real-time status recovers from the
safety boundary, control is handed back to HP-Student for
continuing its self-learning. This interactive design fosters
HP-Student’s learning of a safe and high-performance policy
under dynamic wild environments.

II. PRELIMINARIES

A. Notation

We use P ≻ 0 to represent that P is a positive definite
matrix. Rn indicates the set of n-dimensional real vectors,
while N denotes the set of natural numbers. The superscript
‘⊤’ indicates matrix transposition. We define 0m as an m-
dimensional zero vector and I as the identity matrix of
appropriate dimensions. The notation c > 0n implies that
the vector c ∈ Rn is positive, meaning all its elements are
strictly positive. Lastly, diag{c} is diagonal matrix whose
diagonal entries are given by the elements of c.



B. Definitions

For quadruped robots, we define the following safety and
action sets, to which both system states and action commands
must always be constrained.

S ≜ {e ∈ Rn| − c ≤ C · e ≤ c, with c > 0p} , (1)

A ≜ {a ∈ Rm | − d ≤ D · a ≤ d, with d > 0q} , (2)

where e ≜ s− r denotes the tracking error of proprioceptive
sampling s with respect to the planned motion r from the
navigation module shown in fig. 1. Meanwhile, C and c are
provided in advance to describe p ∈ N safety conditions,
while D and d are used to describe q ∈ N conditions on
physically-feasible action space for safe locomotion control.
The inequalities outlined in eq. (1) are sufficiently general to
cover various safety conditions, such as robot’s velocity reg-
ulation, yaw control for avoiding collisions, and management
of the center of gravity to prevent falling.

In our framework, the HP-Student (i.e., DRL agent) will
engage in self-learning and teaching-to-learn for a safe and
high-performance action policy. To understand them better,
we refer to the safety set (1) and introduce the self-learning
space of HP-Student:

L ≜ {e ∈ Rn| − η · c ≤ C · e ≤ η · c, 0 < η < 1} . (3)

Given 0 < η < 1, and c > 0p, it follows directly
from eqs. (1) and (3) that the self-learning space is a
subset of the safety set, i.e., L ⊂ S. The intentional gap
between these two sets accounts for the system’s response
time and decision-making latency, which stem from physical
constraints, computational limitations, and communication
delays. This means when system states arrive at a safety
boundary, action policy cannot immediately drive it back to
the safety set, without time delay. As shown in fig. 2, the
boundaries of the self-learning space L can thus be regarded
as the marginal-safety boundaries. Based on the set, we
introduce the definition of HP-Student’s safe action policy.

Definition 1 (Safe Action Policy of HP-Student). Consider
the self-learning space L (3). The action policy of the DRL-
agent (i.e., HP-Student) is said to be safe if, under its control,
the robot’s state satisfies that given e(1) ∈ L, the e(t) ∈ L
holds for all time steps t ∈ N.

In our framework fig. 1, the HA-Teacher serves as a
physics-model-based controller dedicated solely to ensur-
ing safety. When HP-Student’s real-time actions are un-
safe according to definition 1, the HA-Teacher will instruct
the HP-Student about safety, fostering a “teaching-to-learn”
paradigm, while backup the robot’s safe locomotion control
simultaneously. As indicated in eqs. (1) and (3) and fig. 2,
the set S \ L defines the HP-Student’s teaching-to-learn
space, also referred to as the marginally-safe space. We
note the action policy of the HA-Teacher must have as-
sured safety; otherwise, its safety teaching will mislead HP-
Student. Therefore, we introduce the definition of “assured
safety,” which guides the design of HA-Teacher later.

𝕊 ∖ 𝕃: teaching-to-learn space, also, marginally-safe space

ℙ𝑘1
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𝕃: self-learning 
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Fig. 2: Illustrations of self-learning space, teaching-to-learn
space (also referred to as marginally-safe space), real-time
patches, safety boundaries, and marginal-safety boundaries.
The Pk1 and Pk2 are successful real-time patches designed
by theorem 1, while Pk3 and Pk4 are failure cases since robot
system under their control either leaves the safety set S (by
Pk3

) or cannot return to the self-learning space L (by Pk4
).

Definition 2 (Safe Action Policy of HA-Teacher). Consider
safe set S (1), action set A (2), self-learning space L (3),
and set teaching horizon as τ ∈ N and teaching period as

Tτ
k ≜ {k + 1, k + 2, . . . , k + τ}. (4)

HA-Teacher’s action policy denoted by πHA(·) is said to have
assured safety, if e(k) ∈ S\L, then i) the e(t) ∈ S holds for
any time t ∈ Tτ

k, ii) aHA(t) = πHA(e(t)) ∈ A holds for any
time t ∈ Tτ

k, and iii) s(k + τ) ∈ L.

By definition 2, the HA-Teacher is deemed trustworthy for
guiding the HP-Student in safety learning only if its action
policy satisfies the following conditions: i) it must ensure the
robot consistently adheres to the safety regulations within S;
ii). it must keep the real-time actions within a physically-
feasible action space A; and iii) it must ensure the robot
states return to the self-learning space L as teaching session
ends. Notably, if condition iii) is not met, the HA-Teacher
will dominate, preventing the HP-Student from developing a
high-performance action policy through self-learning.

III. RUNTIME LEARNING FRAMEWORK

Referring to fig. 1, we describe the design of our runtime
learning framework for enabling safe runtime learning in
dynamic wild environments.

A. Sensing Module

The sensing module provides both proprioceptive and
exteroceptive data from the robot’s onboard sensors. Pro-
prioceptive sensing delivers robot’s state data that includes:
1) direct readings from the Inertial Measurement Unit, gyro-
scope, and motor encoders, which measure orientation and
angular velocity; and 2) estimated center of mass (CoM)
height (using a Kalman filter), and velocities in the CoM-x,



CoM-y, and CoM-z directions. Exteroceptive sensing enables
the perception of external terrain and obstacles. It creates 3D
point cloud data using a depth camera, aiding in environmen-
tal mapping and obstacle avoidance for navigation.

B. Navigation Module
During runtime learning, the navigation module functions

as a high-level motion planner, generating planned motions
for the robot’s locomotion controller to navigate wild en-
vironments. As shown in fig. 1, the pipeline includes: 1)
constructing a Bird’s-Eye View (BEV) map and an occu-
pancy map; ii) applying the Fast Marching Method (FMM)
to compute a 2D cost map; and iii) planning motions.

1) 2D Map Construction: The point cloud data is ob-
tained from the quadruped robot’s depth camera and trans-
formed into the world frame. To enhance computational
efficiency, we filter the point cloud using a Region of Interest,
which allows us to retain only the relevant environmental
features. The filtered data is then projected onto a discretized
2D occupancy grid, with each grid cell encoding local terrain
characteristics. This process helps create the BEV map. Next,
to further process the BEV representation, we generate a
binary occupancy map based on a pre-defined maximum
height of interest. In this map, any region that exceeds the
height of the robot’s body is classified as an obstacle. Within
the occupancy map, we project the goal point from the world
frame onto the map and apply the FMM to compute a 2D
cost map, which will guide motion planning [16]. The 2D
cost map generation pipeline can be found in fig. 3.

2) Motion Planning: Based on the robot’s position on the
2D cost map and its field of view, multiple short-term goals
are identified. For each candidate goal, potential velocity
sets are calculated, taking into account the robot’s current
velocity and control frequency. To ensure smooth movement,
spline-based interpolation is employed to generate contin-
uous motion references. The optimal reference is selected
by minimizing the accumulated cost along the path on the
map. Finally, this optimal motion reference is sent to the
locomotion control module, allowing for seamless navigation
with dynamically feasible motions.

C. Locomotion Module
This module consists of two components: HA-Teacher,

which is a real-time physics-model-based controller, and HP-
Student, which is a DRL agent. Their interactive design
incorporates the core innovations of the proposed runtime
learning framework. The motivation for developing this
module stems from the two common approaches to achieving
locomotion control in quadruped robots. The first approach
is data-driven DRL, which delivers superior performance but
poses challenges regarding verifiable safety. This is due to
the vast number of parameters in DNNs, nonlinear activation
functions, and various random factors. On the other hand, the
physics-model-based controller (e.g., LQR) offers verifiable
safety and stability, but its performance is often limited due
to model mismatches. The characteristics of both approaches
inspire us to integrate them, aiming to bring safe runtime
learning into reality. Next, we detail the design.

1) Coordinator: As shown in fig. 1, the locomotion
module has a coordinator, which is responsible for managing
interactions between HP-Student and HA-Teacher through
monitoring the condition:

e(k − 1) ∈ L and e(k) ∈ S \ L (5)

by which, the data series in eq. (19) for teaching-to-learn in
S \ L can be generated, and the switching logic of actions
applied to the robot for safe locomotion is as follows:

a(t)←

{
aHA(t), if condition (5) holds and t ∈ Tk

aHP(t). otherwise
. (6)

2) HA-Teacher: Safety Only: HA-Teacher’s action policy
is designed to be adaptive to real-time wild environments
to assure safety only. Quadruped robots have dynamics-
environment interactions. When a real-time environment
creates safety issues, it is crucial to update the dynamics
models, action policy, and control goals promptly to ensure
safe and effective responses in real time. This insight has
inspired us to develop a real-time patch for HA-Teacher:

Patch: Pk ≜ {e ∈ Rn| − θ · c ≤ C · (e− e∗k) ≤ θ · c,
0 < θ < 1} , (7)

where e∗k represents the patch center and serves as the real-
time control goal, which is defined below.

e∗k ≜ χ · e(k), where 0<χ<1 and condition (5) holds. (8)

With the control goal at hand, we introduce the following
real-time dynamics model of tracking errors w.r.t. e∗k, which
is derived from the robot’s dynamics model in [17].

ê(t+ 1) = A(s(k)) · ê(t) +B(s(k)) · aHA(t) + h(ê(t)),

for t ∈ Tτ
k ≜ {k + 1, k + 2, . . . , k + τ} (9)

where ê(t) ≜ e(t) − e∗k, h(ê(t)) is model mismatch, and
s = [h,Θ, v, ω]⊤ ∈ R10 with h being CoM height, v =
[CoM x-velocity, CoM y-velocity, CoM z-velocity]⊤, Θ =
[roll, pitch, yaw]⊤, and w being the angular velocity of Θ
in world coordinates. The (A(s(k)),B(s(k))) in eq. (9) is
the available knowledge of physics model for designing HA-
Teacher’s action policy:

aHA(t) = Fk · ê(t) = Fk · (e(t)− e∗k), t ∈ Tτ
k (10)

Hereto, we summarize HA-Teacher’s working mechanism
by considering eqs. (7) to (10). When the real-time states
of the robot, controlled by HP-Student, move from safe
self-learning space L to marginally-safe space S \ L, HA-
Teacher uses the most recent sensor data, s(k), to update the
physics model, denoted as (A(s(k)),B(s(k))). This update
facilitates the computation of both the real-time patch and
the coupled action policy. The patch center, represented as
e∗k = χ · e(k), is situated within HP-Student’s self-learning
space and aligns with HA-Teacher’s real-time control ob-
jectives. This setup defines HA-Teacher’s teaching task: to
guide HP-Student towards an action policy that achieves high
performance while ensuring safety at the safety boundaries.



Next, we present the design of HA-Teacher’s action policy.
Before proceeding, we outline a practical and common
assumption regarding the model mismatch h(e(k)).

Assumption 1. The model mismatch in h(·) in eq. (9) is
locally Lipschitz in Pt (7), i.e.,

(h⊤(e1)− h(e2))
⊤ ·Pk · (h(e1)− h(e2))

≤ κ · (e1 − e2)
⊤ ·Pk · (e1 − e2), Pk ≻ 0, ∀e1, e2 ∈ Pt.

We present the design of HA-Teacher’s safety-assured
action policy in the following theorem. Due to page limit,
its detailed proof is provided in [18].

Theorem 1. [18] Consider the self-learning space (3) and
the real-time patch (7) with its patch center (8), with their
parameters satisfying:

θ + χ · η < 1. (11)

Meanwhile, compute the matrix Fk in HA-Teacher’s action
policy in eq. (10) according to

Fk = Rk ·Q−1
k , Pk = Q−1

k , (12)

with Rk and Qk satisfying:[
Qk R⊤

k

Rk Tk

]
≻ 0, (13)

I−C ·Qk ·C
⊤ ≻ 0, (14)

I−D ·Tk ·D
⊤ ≻ 0, (15)

Qk − n · diag2(s(k)) ≻ 0, (16)[
(α−(1+ 1

γ ) · κ)·Qk Qk ·A⊤(s(k))+R⊤
k ·B⊤

A(s(k)) ·Qk+B ·Rk (1+γ)−1 ·Qk

]
≻ 0,

(17)

where C ≜ C·diag−1{θ·c}, D = D·diag−1{d}, γ > 0, 0 <
α < 1, and κ is the Lipschitz bound given in assumption 1.
According to definition 2, HA-Teacher’s action policy has
assured safety.

We note that using the CVX toolbox [19], the Qk and Rk

can be computed from eqs. (13) to (17) for the Fk.
3) HP-Student: Self-Learning and Teaching-to-Learn:

HP-Student will learn from the HA-Teacher for a safe
action policy in the teaching-to-learn space and engage in
self-learning for a high-performance action policy in the
self-learning space. The integration of these two learning
paradigms enables the HP-Student to achieve a safe and high-
performance action policy. The teaching horizon of the HA-
Teacher is a crucial design. Specifically, during the teaching
period, HA-Teacher generates a sequence of safe experi-
ence tuples, stored in HP-Student’s replay buffer for safety
learning, as illustrated in fig. 1. This allows HP-Student
to progressively internalize safety constraints, ensuring its
learned policies adhere to safe operational bounds.

If the HA-Teacher’s action policy cannot guide the robot
to return to the self-learning space for a high-performance
action policy (as illustrated by Pk4 in fig. 2), ’Teach-to-
Learn’ will take precedence over ‘Self-Learn’ solely for the

sake of learning safety. We note Theorem 1 presents a design
for a safety-assured action policy; however, the computing of
the teaching horizon remains open. Hence, we offer guidance
on the reasonable teaching horizons, formally stated in the
following theorem. Due to page limit, its proof is in [18].

Theorem 2 (Teaching Horizon [18]). Given parameters ϵ >
0, 0 < χ < 1, and 0 < α < 1, if HA-Teacher’s teaching
horizon τ satisfies:

τ ≥ τmin ≜
ln(1−(1+ϵ) · χ2)−2 ln(1 + ϵ−1)−ln(1+χ)

lnα
,

we have e(k + τ) ∈ L, i.e., the robot states can come back
to HP-Student’s self-learning space.

With the teaching horizon in sight, we can proceed to
present the self-learning and teaching-to-learn.
Self-Learning. As shown in fig. 1, HP-Student adopts an
actor-critic architecture [20], [21] in DRL, with an experi-
ence replay buffer to enhance sample efficiency and mitigate
temporal correlations. Its observation space is structured as:
ot = [zt, et]

T , where zt is the exteroceptive observation, and
et is the proprioceptive tracking error: et ≜ st− sd, with sd
being the desired state. The self-learning objective is to opti-
mize the action policy aHP(k) = π(o(k)) which maximizes
the expected return from the initial state distribution:

Qπ(e(k),aHP(k))

= Ee(k)∼L

[ ∞∑
t=k

γt−k · R (e(t),aHP(t))

]
, (18)

where L denotes the self-learning space defined in eq. (3),
R(·) is the reward function that maps the state-action pairs to
real-value rewards, γ ∈ [0, 1] is the discount factor, balancing
the immediate and future rewards. The expected return (18)
and action policy π(·) are parameterized by the critic and
actor networks, respectively. The reward function of HP-
Student is designed to enhance task-oriented performance
in robots through runtime learning. Examples include mini-
mizing travel time and power consumption in navigation and
ensuring accurate state tracking in locomotion.
Teaching-to-Learn. HP-Student controls the robot in normal
situation. If its action aHP(t) is unsafe by definition 1, HA-
Teacher intervenes to ensure safe locomotion and generates
a series of experience tuples over the teaching horizon τ :

Eτ = {aHA(t), o(t), o(t+ 1),R (o(t),aHA(t))}k+τ
t=k (19)

which are continuously stored in HP-Student’s replay buffer
and uniformly sampled for safety learning.
Remark. We note the action policy designed by the HA-
Teacher in theorem 1, is inherently safety-assured. The
group of tuples Eτ in eq. (19) documents the HA-Teacher’s
successful experiences in controlling a robot from the safety
boundary to a secured self-learning space. Consequently, the
HP-Student will learn from these HA-Teacher’s experience,
specifically on how to safely manage the robot at the safety
boundary. This approach enables the HP-Student to develop
a safe and high-performance action policy suitable for real-
time operations in dynamics wild environments.



(a) Dynamic wild environments in Isaac Gym (b) Raw BEV Map (c) Occupancy Map (d) Cost Map

Fig. 3: Fig (a) is an overview of the dynamic wild environments: transiting from the flat terrain to unstructured and uneven
ground. The quadruped robot navigates to the destination following the waypoints with minimum costs through runtime
learning. The next waypoint is highlighted in blue, and the remaining waypoints are marked in red. Figs. (b), (c) and (d)
illustrate the cost map generation pipeline using the point cloud data.

IV. EVALUATION
We utilize Nvidia Isaac Gym [22] and the Unitree Go2

robot to evaluate our proposed runtime learning framework.
In Isaac Gym, we create dynamic wild environments, which
include various natural elements, such as unstructured ter-
rain, movable stones, and obstacles like trees and large rocks.
Additionally, we arrange multiple waypoints at reasonable
intervals across the terrain to simulate real-world tasks for
the robot, such as outdoor exploration and search-and-rescue
operations. The aim is to guide the robot to its destination
by sequentially following these waypoints while minimizing
traversal costs and adhering to safety constraints. The estab-
lished wild environments can be found in fig. 3 (a).

A. HP-Student: Task-Oriented Reward
The reward for the DRL agent (i.e., our HP-Student)

primarily focuses on three key aspects: robot safety and
stability, travel time, and energy efficiency.

1) Stability: Stability is essential for the robot’s safe lo-
comotion control. Thus we consider a Lyapunov-like reward
in [23], [24], which incorporates both safety and stability:

rstability = e⊤(t) ·P · e(t)− e⊤(t+1) ·P · e(t+1), (20)

The computation of P can follow the guidance in [24].
2) Travel Cost: The Euclidean distance between the robot

and the waypoint is defined as:

d(t) = ∥x̂b(t)− p̂wp∥2 (21)

where p̂wp is the location of next waypoint, and x̂b is the
position of the robot base in the world frame. Inspired by
[25] and [26], the navigation reward is defined as:

rnav(t) = c1 · rdis(t) + c2 · rwp + robs (22)

where rdis(t) = d(t)−d(t− 1) is the reward for forwarding
the waypoint. rwp = e−λ·Treach rewards the robot as it
reaches the waypoint. λ ∈ (0, 1) is a time decay factor and
Treach denotes the time step when the waypoint is reached.
robs serves as a penalty when the quadruped collides with
the obstacles. c1, c2 and c3 are used hyperparamters.

3) Energy Consumption: Power efficiency remains a ma-
jor challenge for robots in outdoor settings. We model the
motor as a non-regenerative braking system [27]:

pmotor = max{ τm · ωm︸ ︷︷ ︸
output power

+ Lcopper · τ2m︸ ︷︷ ︸
heat dissipation

, 0} (23)

where τm and ωm are motor’s torque and angular velocity
respectively. Lcopper is copper loss coefficient. Taking cm as
a hyperparameter, we define the energy consumption reward:

renergy = −cm · pmotor (24)

The ultimate reward function, designed to guide the HP-
Student in learning a safe and high-performance policy as
defined in eq. (18), is given by integrating the components
from above eqs. (20), (22) and (24), i.e., R (e(t),adrl(t)) =
rstability + rnav + renergy + ĉ · raux, where raux denotes the
auxiliary reward for tracking velocity and orientation, with
a small coefficient ĉ to promote smooth locomotion.

HP-Student’s exteroceptive observation includes the Eu-
clidean distance dwp between robot and next waypoint, and
the robot’s heading angle deviation to the waypoint ψwp. Its
priproceptive tracking error is shared with HA-Teacher.

B. HA-Teacher: Safety Critical Design

The real-time physics-model knowledge in eq. (9) – used
for HA-Teacher design in theorem 1 – is obtained by
considering the robot’s dynamics as described in [17]:

B(s(k)) =


O3 O3 O3 O3

O3 O3 O3 O3

O3 O3 T · I3 O3

O3 O3 O3 T · I3

,

A(s(k)) =


1 O1×5 T O1×3

O3 I3 O3 T ·R(ϕ(k), θ(k), ψ(k))
O3 O3 I3 O3

O3 O3 O3 I3

,
where R(ϕ(k), θ(k), ψ(k)) is the real-time rotation matrix
and T is the sampling period of the robot system.
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(a) Accumulated number of robot’s falls
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(b) Trajectory of the robot’s CoM velocity
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Fig. 4: (a) is the accumulated number of robot falls over learning episodes. (b) and (c) depict the robot’s CoM trajectories,
highlighting the effectiveness of our framework in ensuring runtime learning safety under dynamic wild environments.

C. Experimental Results

1) Safety Assessment: We set quadruped’s desired state
to be: vdx = 0.4 m/s, hd = 0.3 m, ωd

z = ωref
z , where ωref

z

is the reference angular velocity trajectory generated by the
planner. Following the definition in eq. (1), we certify the
robot’s safety set:

S = {e ∈ R10 | |evx | ≤ 0.4 m/s, |eh| ≤ 0.15 m}, (25)

where evx ≜ vx − vdx denotes the error between the robot’s
forwarding velocity and its command, and eh = h−hd is the
error between the robot’s CoM height and its desired height.
The corresponding action space in eq. (2) is:

A = {a ∈ R6 | |av| ≤ 10 m/s2, |aω| ≤ 20 rad/s2}, (26)

where a = [av, aω]
⊤, with av ∈ R3 and aω ∈ R3 denoting

the robot’s linear and angular acceleration, respectively.
To establish the self-learning space L in eq. (3), we choose

η = 0.7. And ωref
z is clipped within a range to ensure smooth

angular velocity during navigation: ωref
z ∈ [−0.7, 0.7] rad/s.

For HA-Teacher, we select α = 0.8, κ = 0.01, χ = 0.15,
and τ = 10 satisfying condition in theorem 2. By utilizing
the CVX toolbox [19], we can compute Fk from eqs. (13)
to (17) in theorem 1 for HA-Teacher’s action policy (10).

The experiment also includes comparisons with the state-
of-the-art safe DRL frameworks: CLF-DRL [23] and Phy-
DRL [24]. We assess the safety assurance of our framework,
CLF-DRL, Phy-DRL, and sole HA-Teacher, by analyzing the
number of falls during runtime learning, as summarized in
table I and fig. 4 (a). A demonstration video is available at:
https://youtube.com/shorts/2IsZQYwjccg

The demonstration video, in conjunction with table I and
training reward in fig. 5, highlights the effectiveness of our
approach in ensuring runtime safety for the quadruped robot
during navigation tasks in the dynamic wild environments.
Additionally, the corresponding trajectories of the robot,
depicted in fig. 4, further illustrate the capability of our
framework in maintaining the robot states within the safety
set, as outlined in eq. (26), throughout runtime learning.

2) Performance Assessment: We assess the efficiency of
our framework by comparing it against different DRL agents,
i.e., Phy-DRL and CLF-DRL, and sole HA-Teacher, as
summarized in table I. The episodic returns are shown in
fig. 5 and models are selected after training 1500, 3000,
and 4500 episodes for running the task. For navigation
performance, we measure Success–whether the robot reaches
the destination, Is Fall–whether the robot falls, Collision–
whether the robot collides with obstacles, Num (wp)–number
of waypoints the robot followed and Travel Time. For energy
efficiency, we evaluate Avg Power–average motor power and
Energy Consumption–total energy used.

In table I, CLF-DRL agent struggles to develop an op-
timal policy for navigation task. Benefiting from its inher-
ent structure, Phy-DRL demonstrates improved performance
but still faces slow convergence and safety issues during
runtime learning. HA-Teacher ensures safe navigation, but
it is inefficient in travel time and energy consumption. In
contrast, under the same conditions, our framework enables
the HP-Student to effectively adapt to the wild environ-
ments, achieving a safe and high-performance policy after
runtime learning. The demonstration video is available at:
https://youtube.com/shorts/epw7sSYIiqs.
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Fig. 5: Episodic Returns During Runtime Learning
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Methodologies Model – ID
Navigation Performance Energy Efficiency

Success Is Fall Collision Num (wp) Travel Time (s) Avg Power (W) Total Energy (J)

CLF-DRL
clfdrl-ep-1500 No Yes Yes 0 N/A N/A N/A
clfdrl-ep-3000 No Yes No 0 N/A N/A N/A
clfdrl-ep-4500 No Yes No 1 N/A N/A N/A

Phy-DRL
phydrl-ep-1500 No Yes No 0 N/A N/A N/A
phydrl-ep-3000 No No Yes 2 ∞ 504.3827 ∞
phydrl-ep-4500 Yes No No 4 56.6316 489.5142 27721.97

Ours
rtl-ep-1500 No No Yes 2 ∞ 491.7283 ∞
rtl-ep-3000 Yes No No 4 48.6417 488.5232 23762.59
rtl-ep-4500 Yes No No 4 45.3792 490.9204 22277.53

HA-Teacher – Yes No No 4 59.2706 493.8499 29270.78

TABLE I: Comparison of Different DRL Agents, the Sole HA-Teacher, and Our Runtime Learning Framework. Safety-
related metrics are highlighted in red, while key navigation metrics are marked in blue. In instances where the robot falls,
other task-related metrics are labeled as N/A due to the safety-critical nature of the robot. For collision scenarios, travel time
and energy consumption are represented as ∞, with power reflecting the average energy consumption prior to the collision.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a runtime learning framework that
enables a quadruped robot to learn adaptively and safely
in complex wild environments. The framework offers verifi-
able safety guarantees while enhancing learning performance
during runtime adaptation. Experiments conducted with a
Unitree Go2 robot in Isaac Gym have demonstrated the
effectiveness of this runtime learning approach.

Moving forward, we will implement the proposed runtime
learning framework on the real Unitree Go2 robot, enabling
robot to safely learn in real-time physical environments.
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