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ABSTRACT  

Sign language recognition is challenging, due to the scarcity of available annotated corpora and the difficulty of large 
vocabulary. In this paper, we study the task based on a Chinese SL database-DEVISIGN, but it only has a few samples to 
train the deep network on the scratch. First, we segment the hand to eliminate the disturbance of irrelevant factors. By 
analyzing the special movement tendency of sign words, we propose two novel Key-frame selection schemes. Since no 
other datasets can have similar data distribution with our preprocessed data, we invent a novel cross-sampling approach, 
which successfully prevent the overfitting under small sample. To enhance the diversity of data, we take several sampling-
based videos as input, and learn spatiotemporal features based on R(2+1)D-18 layers, which is successful in action 
recognition tasks. Finally, it is shown that our solution can obtain the state-of-the-art performance. 
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1. INTRODUCTION 
Nowadays, hearing loss has severely negative impacts on the life quality of deaf people [1]. It is quite difficult for a deaf 
person to interact with common people as the common people seldom gain the knowledge of sign language. Hopefully, 
automatic sign language recognition is possible to bridge the communication gap. 

However, there are some limits on sign language recognition [2]. Because of the large vocabularies, large-scale formal 
sign language datasets are not available as the normal gesture datasets such as Chalearn LAP IsoGD Database [3] and the 
Sheffield Kinect Gesture dataset (SKIG) [4]. 

 
Herein, we choose the Chinese large-scale sign language database DEVISIGN [5], which covers 2000 standard Chinese 

sign language words, for researching, although there are not many predecessors taking it for examination, Figure. 1 shows 
some examples of the collected sign data by Kinect. The first row represents videos without pre-processing, the left is the 
illustration figure, the middle is RGB image and the right is the depth image. The results on the second row vividly shows 
the results of hand segmentation and optical flow computation, the left picture is processed RGB image, the middle picture 
is processed depth image and the right part is optical-flow image. 

 

 
Figure 1. An example of the sign word ‘human’, RGB data, 
depth data and optical flow data. 

 
Figure 2. Pipeline of the proposed framework.  

However, among previous Chinese sign language recognition works in DEVISIGN, few people considered about deep-
learning method because of the small sample, and thus many researchers failed to capture the temporal information. What’s 
more, even in other common isolated gesture datasets, many methods using deep networks had to abandon the model-size 
for better classification results like C3D [6], C3D+ConvLSTM [7] and Res-C3D [8]. Therefore, in order to improve the 
classification results while not enhancing the parameters in the model, we propose a multimodal isolated sign language 
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recognition method using a R(2+1)D network [9], which has been proved valid for they outperform many innovative 
strategies like C3D [10], P3D [11] and I3D [12] while keeping relative suitable model-size in action recognition tasks. 
Compared to the previous factorized P3D (an effective method by interleaving three blocks in sequence on networks), it 
is simple and homogeneous while the same (2+1)-decomposition is used in all blocks. Therefore, we want to take a try to 
implement this outstanding architecture in gesture recognition tasks since its performance in action recognition. 

 
Furthermore, using our novel cross-sampling approach can successfully train deep network under small sample when 

no pre-trained models can be found. To recap, as illustrated in Figure. 2, our contributions in this paper include: 
l We first utilize deep (2+1)D network based on convolution factorization in gesture-related tasks, which are quite 

useful since they can improve the model capacity by doubling the nonlinearities, and our method first captures 
temporal information and outperforms previous state-of-the-art on DEVISIGN-D. 

l Rather than taking uniform sampling [13, 14, 15], which are commonly utilized to normalize the length of video clips, 
we design two new schemes relied on the skeleton data and optical flow data, which capture the key information 
about sign language well. 

l Although it seems that finding pre-trained models might be impossible due to unique data distribution of our 
preprocessed data, we successfully implement the cross-sampling strategies as an optional approach to prevent 
overfitting under small sample.  

2. MULTIMODAL FUSION FRAMEWORK 
As illustrated in Figure. 2, our deep architecture is composed of four modules. At first, we adopt the temporal segmentation 
based on mixed segmentation method with RGB data, depth data and skeleton data, and the result is illustrated in Figure. 
1. At the same time, we collect the optical flow videos generated from the RGB stream, which is illustrated in Figure. 1. 
 

Since CNN-based networks require fixed input dimension, we invent two new key-frame sampling approaches with 
skeleton data and optical flow data by concluding the immanent tendency of sign language performing, which proved to 
outperform the uniform sampling a lot. Then, with the novel cross-sampling method finetuned using R(2+1)D architecture, 
we train the network successfully. Moreover, we enhance the diversity of data by using different sampling strategies as 
input. Finally, we fuse the scores from three channels to get the final multimodal classification result. 
2.1. Data preparation 
Since sign language recognition is quite different from action recognition that in the whole video, eliminating the 
disturbance of variant illumination, different clothes and human face pixels might be a useful improvement. Therefore, 
reducing the data complexity by undermining interference of irrelevant factors might also be useful to prevent overfitting 
under small sample. 
 

In order to select good approaches to segment the hand, the multimodal information is utilized, e.g. depth information, 
skeleton data and several color spaces. First, enhancing the multiple thresholding algorithm in several spaces in RGB, 
HSV and YCrCb [16] by implementing the Otsu thresholding to get better skin detection results. Second, hand positions 
are roughly determined by the positions of hand joints. Third, according to the hand position in each video and relative 
depth information, a depth-based mask is obtained. Finally, the bitwise AND operation is used to synthesize the color-
based mask and the depth-based mask to get effective hand segmentation, which is shown in Figure.1. 

 
In order to get robust optical flow computation, we generate the optical flow from the RGB data stream and we save 

optical flow values as RGB images to use as another modality of data to enhance the classification performance. An optical 
flow image example is shown in Figure. 1. 
2.2. Key frame sampling 
2.2.1 Video analysis 
CNN-based networks require fixed input dimension, which means that we have to take some sampling schemes to choose 
frames from raw videos. Uniform sampling is widely utilized in previous studies [13, 14, 15]. However, uniform sampling 
fails to capture the key information in isolated sign language video as uniform sampling will ignore sign video distinct 
attributes. 
 

As we know, in most isolated sign language video, the action can be divided into three phases [8]: beginning, climax 
and ending. To get an understanding of their features, we will analyze the movement in the following discussion based on 
Figure. 3. In Figure. 3, in the beginning stage, the signer’s movement is slight until he actually raises his hand in twentieth 
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frame, which implies that the beginning stage has little information about the signs difference. Moreover, from the 20th to 
the 80th frame, it is the climax stage, the movement is quite sharp, especially around the 50th frame. Therefore, the climax 
phase must be the most important stage which includes key information about the isolated sign language. 

 
      Figure 3. The relative movement tendency of the sign word ‘the weak’. The value of the Y axis represents the relative value. In 

order to observe the tendency, all of them are multiplied by a constant number.  
2.2.2 Key frame Definition  
By analyzing the movement in each sign word, we find that when the movement is quite sharp in a video segment, this 
segment must contain much information with high representativeness. Therefore, we propose two novel key-frame 
sampling methods, one approach based on optical flow (OF-S) and the other method based on skeleton-data (S-S). As OF-
S and S-S work processes are the same, here we list the procedure of S-S.  
 

We divide the whole video into several segments to analyze their movement tendency, respectively. Firstly, we 
uniformly divide them into n clips. For each clip, we compute the sum of the absolute value of difference about left and 
right hands’ 3D coordinates in adjacent frames dki  (1≤i≤n). For example, the total sum of these clips’ value is computed 
as follows: 

                                                                                                                                     (1) 
Then, the weight of the i-th clip is defined as  

                                                                                  (2) 
Then for each video segment, the needed number of frames are obtained according to the weight. Let S denote the required 
number of frames, we define  

                                                                             (3) 
Finally, uniform sampling in each video segment is used to select the frames according to the value of Sei. For example, 
in our experiments, for each video containing m frames, we set  𝑛 =	 !×#

$
, and S is set to 32. Then the segment interval is 

16.      
2.3.  Learning spatiotemporal features based on R(2+1)D-18 model 
As the dimension of input data has been determined, we focus on the model to extract spatiotemporal feature. Nowadays, 
R(2+1)D is a high performing network in action recognition tasks. Furthermore, we select R(2+1)D-18 layers [9] for 
several reasons. On the one hand, R(2+1)D maintains the advantage of R3D, and has better model capacity while 
maintaining approximately equal number of parameters. On the other hand, we only have two GPUs in our lab to train 
neural networks, which means it is hard to train very deep networks. Therefore, we apply this R(2+1)D-18 layers 
architecture in our task. 

SK = dk1 + dk 2 +!+ dki +!dkn

Wki =
dki
SK

Sei =Wki × S
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Figure 4. R3D block vs R(2+1)D block a)The residual building-block used in the R3D architecture. b) The residual building-b lock 
used in the R(2+1)D architecture. 

The structure of 3D block and (2+1)D block are illustrated in Figure.4. The main difference between 3D block and 
(2+1)D block is that (2+1)D block decomposes the 𝑁!  3D convolutional filters (the size is 𝑁!"# × 𝑡 × 𝑑 × 𝑑, where t 
denotes the temporal extent of the filter and	𝑑 denotes the spatial dimension of the filter) into 𝑀!  2D Convolutional 
filters(the size 𝑖𝑠		𝑁!"# × 1 × 𝑑 × 𝑑) and Ni temporal convolutional filters(the size is 𝑀!"# × 𝑡 × 1 × 1). Hyperparameter 
Mi signifies the intermediate subspace between the spatial and the temporal convolutions, Ni denotes the number of filters 
in the i-th block. The relation between Mi and Ni is 

𝑀! = # "#
$$%&'$%

#$$%&'%"$%
$                                                                              (4) 

Therefore, the number of parameters in R(2+1)D block approximates to the number of parameters in full 3D-
Convolution while doubling the nonlinearities, which leads to better capacity. 
2.4.  Multimodal fusion 
In this paper, late fusion is implemented by fusing the scores on the prediction results of the multimodal data.  Besides, 
we also try to implement early fusion by concatenating the features to improve the performance. After several attempts, 
we take the feature-level fusion by sending concatenated features to a linear SVM to get the final classification results, as 
illustrated in Table. 5. 

3. EXPERIMENTS 
3.1.  Datasets 
DEVISIGN [5] is a Chinese vocabulary database, which covers 2000 Sign Language words captured by Kinect. We select 
the subset-DEVISIGN-D for examination. It contains 500 daily used vocabularies, including 36 static gestures in 
DEVISIGN-G. The data covers 8 different signers. Among them, the vocabularies are recorded twice for 4 signers and 
once for other 4 signers. Since having to do the signer independent tasks, the probe set should contain data from 4 different 
signers. 

Table 1. Data partition of DEVISIGN-D datasets in the evaluation protocols. 
Training Data Probe Data 

P01_1, P01_2, P02_1, P02_2, P03_1,  
P03_2, P04_1,  P04_2 

P05_1, P06_1, 
P07_1, P08_1 

 
3.2.  Networking training 
We conduct our experiments on a PC with Intel Core i5-6200 CPU @ 2.30GHZ ´ 8,16GB RAM and NVIDIA Tesla M40 
GPU.  Input videos are sampled into 32 frames and each frame is resized into 128´171. Moreover, the video clips are 
random-cropped into 112´112. To learn the weights of the architecture, we parallel train them by using the Adam optimizer 
with a batch size of 6 based on two Tesla M40 GPU. The initial learning rate is set to 0.0001 and the training process is 
stopped after 12 epochs. Weight decay is set to 0.00005. In addition, Batch Normalization layer is implemented after each 
convolutional layer to improve the training efficiency. Furthermore, the optical flow videos are generated by us with 
pyflow [17], a python wrapper for dense optical flow. 
 

In DEVISIGN-D, every vocabulary has 12 videos: 8 videos for training and other 4 videos for testing. Therefore, in 
order to keep away from overfitting, the data is augmented by three strategies like image mirroring, different sampling 
unification approaches and random crop. We also use temporal jitter [7] to augment the dataset. 
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As no pre-trained models on other datasets are utilized in our training, a novel fine-tuning approach for DEVISIGN-D 
has been implemented by us. To be specific, we train on uniform sampling videos, then fine-tuning on the key-frame based 
sampling videos.  

 
Several strategies are implemented to help us evaluate the proposed approach: 
Strategy 0: To obtain effective segment interval, we try to compare several intervals’ results. Since some videos only 

contain 33-35 frames, we select 16 as maximum segment interval to ensure at least two video segments.  To analyze the 
tendency, we choose 4, 8 and 16. 

Strategy 1: To test our novel sampling methods, we train the RGB-based networks of different sampling strategies on 
the scratch, respectively. 

Strategy 2:  To test our cross-sampling method, train uniform-sampling (U-S) based networks on the scratch at first, 
and then finetune other sampling approaches’ models based on the models of uniform sampling-based models in three 
modalities, individually. 

Strategy 3:  To enhance the diversity of our data, we use both the optical flow-based sampling (OF-S) videos and the 
skeleton-based sampling (S-S) videos as the input, we first train skeleton-based sampling RGB videos on the scratch, then 
finetune the models of the synthetic strategies on the models of skeleton-based sampling RGB videos in each modality, 
respectively. 

Strategy 4:  We also compare several models based on the same training tricks as Strategy 3, such as C3D, C3D + 
ConvLSTM +SPP, R3D18 and R3D34. 

Table 2. Sign language recognition accuracy for different strategies of different modalities. To analyze the results more 
evidently, we list top-1 accuracy and top-5 accuracy. 

 Modality Method Top-1  Top-5 

Strategy 0 
RGB 
RGB 
RGB 

Interval-4 
Interval-8 

Interval-16 

42.86 69.56 
44.06 70.51 
44.28 72.09 

Strategy 1 
RGB 
RGB 
RGB 

U-S 
OF-S 
S-S 

36.80 63.75 
39.47 68.46 
44.28 72.09 

Strategy 2 

RGB 
Depth 
Flow 
RGB 
Depth 
Flow 

OF-S 
OF-S 
OF-S 
S-S 
S-S 
S-S 

49.05 
47.31 
39.47 
49.90 
49.65 
41.92 

74.00 
72.95 
65.82 
75.50 
75.05 
70.56 

Strategy 3 
RGB 
Depth 
Flow 

OF+S 
OF+S 
OF+S 

52.22 
53.07 
49.48 

77.39 
77.31 
74.49 

 

3.3. Learning spatiotemporal features based on R(2+1)D-18 model 
Table 2 shows the results of four strategies on different modalities. The findings demonstrate that our sampling strategies 
are beneficial to sign language recognition, and cross-sampling finetuning might be a quite useful approach to prevent 
overfitting when no pretrained models are available. 

Observing the results about three intervals, we find that it seems the final results is proportional to increasing interval. 
This is due to that if each clip only contains a small number of frames, the difference of importance between clips will be 
very small, which is hard to select key frames by importance. Finally, interval is set to 16. 
3.3.1. Key Frame Sampling  
By training the networks on the scratch, we can deduce that our two strategies must contain more valuable information 
than the normal sampling mechanism. S-S and OF-S results outperform the uniform-sampling result in strategy 1, e.g. S-
S achieves 7.48% improvement in top-1 acc and 8.34% improvement in top-5 acc. OF-S achieves 2.67% relative 
improvement in top-1 acc and 4.71% relative improvement in top-5 acc.  
3.3.2. Small sample 
With only small sample, it is quite easy to overfit even we have done some data augmentation tricks. Therefore, finetuning 
must be utilized to prevent over-fitting. However, due to our distinct data distribution of our processed videos, it is difficult 
to find any other common datasets which have similar data distribution. Fortunately, we find that taking cross-sampling 

Proc. of SPIE Vol. 11526  115260A-5



 
 

 
 

strategy’s model as the pretrained model can solve this problem coincidentally. From Table 2, we surprisingly find that 
the cross-sampling strategies could help prevent the overfitting and improve the final classification results, e.g. OF-S 
achieves 12.75% improvements in RGB modality.  
3.3.3. Model Selection 
We also compare several models performance based on the same training tricks, such as C3D, CLSTM+SPP, R3D18 and 
R3D34, depicted as Table 3.  

Table 3. Isolated Sign Language recognition accuracy for different 
models. 

Net Params Method Top-1 Top-5  
C3D[6] 113.6M OF+S 37.04% 67.04% 

CLSTM+SPP[13] 29.9M OF+S 37.23% 62.27% 
R3D-18[9] 33.4M OF+S 48.78% 74.59% 
R3D-34[9] 56.5M OF+S 48.10% 71.89% 
R(2+1)D[9] 33.3M OF+S 52.22% 77.39% 

 
 

Maximum 99.9M OF+S 59.43% / 
Averge 99.9M OF+S 59.43% / 

Concatenate 99.9M OF+S 61.51% / 
 

Table 4. The evaluation results of previous state-of-the-
art and our methods on DEVISIGN-D. 

Method Accuracy 
HMM[5] 
ARMA[5] 

fastDTW[5] 
GCM[18] 

43.5% 
46.5% 
49.0% 
57.0% 

Proposed Method 61.51% 
 

 
The results reveal that comparing with previous high performance methods related to gesture recognition, Resnet-3D 

performs better. Also, it reveals that even deeper like R3D-34, the final accuracy isn’t higher than R3D18. Therefore, it is 
suitable to choose R(2+1)D-18 layers in our small-scale dataset.  
3.3.4. Multimodal 
From strategy 3, we have learnt that when using several strategies together to enhance the diversity of the training data, 
the overall performance will be improved a lot. 

After that, we do some work about different strategies for multimodal fusion since it can further improve the final 
classification results, such as score fusion and feature fusion. Two score fusion methods are examined for the deep 
architecture in Table 3, such as average fusion and maximum fusion. Furthermore, we also concatenate the features from 
different modalities to obtain a single vector sent to a linear SVM classifier, the results of above methods are depicted in 
Table 3. From Table 3, we find that in our experiments, feature-level fusion as concatenating can increase the accuracy by 
at least 8.441%, while late fusion as maximum fusion can achieve better results about 6.356% improvement, so we choose 
concatenating fusion scheme at last. 
3.4. Comparisons of state-of-the-art  
The performance of our deep-learning based method is compared with the previous state-of-the-art methods about hand-
craft features like [2]. From Table 3 and Table 4, we find that even the single modality’s accuracy can overperform many 
previous multimodal results.  
3.5. Validation Analysis 
As we can see in the Figure. 5, the results reveal that double hand words are recognized with higher accuracy than single 
hand words. It seems that single hand words might be more challenging in this task, so we take a clear look at the database 
and find that many completely wrongly predicted single hand words are static gestures like ‘0’-‘9’ and ‘A’-‘Z’. Almost 
52.8% static single words are classified completely wrong. It reveals that spatiotemporal extractors may not be an effective 
approach for these static sign words who have small number of useful and distinct frames and many irrelevant frames. 

 

        Figure 5. Per-class validation accuracy of our methods. 
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4.  CONCLUSIONS 
This paper presents an effective architecture based on R(2+1)D for isolated sign language recognition under small sample. 
The results demonstrate that our key-frame sampling methods outperform common uniform sampling in sign language 
recognition, and cross- sampling will be an effective mechanism to be used as a finetuning method even when no suitable 
pretrained models exist. However, the results might be better if we consider to fuse skeleton features or we consider to 
utilize attention mechanism to improve the feature extraction.  
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