

Real-DRL: Teach and Learn in Reality

Yanbing Mao^{1,*}, Yihao Cai^{1,*}, Lui Sha²

¹Wayne State University ²University of Illinois Urbana-Champaign

*Indicates Equal Contribution

Presenter: Yihao Cai

Preliminary

Motivation

NEURAL INFORMATION PROCESSING SYSTEMS

Runtime Safety for Deep Reinforcement Learning (DRL)

Autonomous Vehicles^[1]

Unmanned Aircraft^[2]

Quadruped Robots^[3]

Humanoid Robots^[4]

How do we ensure runtime safety in safety-critical autonomous systems while DRL agents perform online learning?

Reference:

- [1] https://www.wired.com/story/dashcam-footage-shows-driverless-cars-cruise-waymo-clogging-san-Francisco/
- [2] https://flyfrompti.com/unmanned-aircraft-systems-uas-drones/
- $[3] \ https://droneblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqAardineblocks.io/product/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-quadruped-robot/go2-edu-go2-$
- [4] https://manlybattery.com/guide-to-leading-humanoid-robots/?srsltid=AfmBOoo1P5Dza-0L1jEdroApnsv2Um_yD2Wxozw_w1V-tYzqF2XObhkJ

Motivation

NEURAL INFORMATION PROCESSING SYSTEMS

Data Imbalance Issue from Sampling

How can the challenges of data imbalance be tackled to achieve more robust and generalizable DRL policies?

Challenges

Runtime Learning Safety

- The risky nature of <u>trial-and-error</u> exploration in DRL
- Learning in <u>hard-to-predict</u> and <u>hard-to-simulate</u> environments requires timely and adaptive responses

Safety-related Data Imbalance Issue

- \triangleright Underrepresentation of <u>rare</u> but <u>crucial</u> data \rightarrow poor safety at critical moments
- Leading to training bias and <u>limited generalization</u> capability

Sampling Efficiency

- High-quality data fosters efficient and safe learning
- > Inefficient sampling prolongs training, and increases runtime safety risks

Proposed Solution

Proposed Framework

Component 1: DRL-Student

- 1. Dual buffer for self-learning and teaching-to-learn paradigm
- 2. Safety-informed batch sampling

Component 2: PHY-Teacher

- 1. Fostering the **teaching-to-learn** mechanism regarding safety
- 2. Safety backup for the real plants

Component 3: Trigger

Monitoring the real-time safety status of the physical plant, and also deciding the terminal action to the plant

Component-I: DRL-Student

Safety-informed Batch Sampling

Safety-status indicator

$$V(\mathbf{s}) \triangleq \mathbf{s}^T \cdot \mathbf{P} \cdot \mathbf{s}$$

 \mathbf{s} – real time state $\mathbf{s}(t)$

Total Sampled Batch Size

$$L = \underline{L_t} + \underline{L_s}$$

$$\underline{L_t} = \min\{L, [L \cdot (\rho_1 \cdot V(\mathbf{s}(t)) + \rho_2]\}$$

$$L_s = L - \min\{L, \lceil L \cdot (\rho_1 \cdot V(\mathbf{s}(t)) + \rho_2 \rceil\}$$

$$\rho_1, \rho_2$$
 – hyperparameters

Component-II: PHY-Teacher

Real-time Patch Design

Safety Set:
$$\mathbb{S} \triangleq \{ s \in \mathbb{R}^n | -c < C \cdot s < c \}$$

Self-Learning Space:
$$\mathbb{L} \triangleq \{ s \in \mathbb{R}^n | -\eta \cdot \mathbf{c} < \mathbf{C} \cdot s < \eta \cdot \mathbf{c} \}, 0 < \eta < 1 \}$$

Real-time Patch Design \mathbb{P}_k

- 1 Control Goal: $\mathbf{s}_k^* \triangleq \chi \cdot \mathbf{s}(k)$, $\mathbf{s}(k-1) \in \mathbb{L}$ and $\mathbf{s}(k) \in \partial \mathbb{L}$
- 2 LMI Feasibility: Construct LMIs and optimize for F_k
- 3 Action Policy: $\mathbf{a}_{teacher}(t) = \mathbf{F}_k \cdot (\mathbf{s}(t) \mathbf{s}_k^*), \quad t \in \mathbb{T}_k$

Component-III: Trigger

Triggering Condition $T: s(k-1) \in \mathbb{L}$ and $s(k) \in \partial \mathbb{L}$

PHY-Teacher Action Step: $\mathbb{T}_k \triangleq \{k+1, k+2, ..., k+\tau_k\}$

Switching Law

NEURAL INFORMATION

$$\mathbf{a}(t) = \begin{cases} \mathbf{a}_{teacher}(t), & \text{if } \mathcal{T} \text{ holds at } k, \text{ and } t \in \mathbb{T}_k \\ \mathbf{a}_{student}(t), & \text{if } \mathbf{s}(k) \in \mathbb{L} \end{cases}$$

Experiment

Runtime Learning Environment

Ablation Study – Demonstrating Three Key Features of Real-DRL

Feature I: Teaching-to-Learn mechanism

Episode-Average Reward:

Return (i.e., cumulative reward) in one episode

DRL-Student's total activation time in one episode

Adopting Teaching-to-Learn paradigm leads to overall improved episode-average

reward and stable learning

Episode-Average Reward

Feature II: Safety-informed Batch Sampling

Capacity = N

Capacity = N

Capacity = 2N

Versus?

Feature II: Safety-informed Batch Sampling

1. Agent built on Real-DRL maintains safety on **both** cases after runtime learning

2. Agent sampling from a united replay buffer maintains safety in the **majority** cases but failed on **corner** cases

Phase Plot (with vs. without safety-informed sampling)

Feature III: Automatic Hierarchical Learning

Agent Trajectory from Different Episodes (Inference)

Safety Set

Task Goal: $(\bar{x}^*, \bar{\theta}^*) = (0, 0)$

From the same initial state, after 5 episodes learning by Real-DRL, the trajectory of the agent is within the safety set (safety-first); after 20 episodes, the trajectory gets closer to the control goal (high-performance)

Automatic Hierarchical Learning:

Safety-first ----→ High-Performance

Feature III: Automatic Hierarchical Learning

PHY-Teacher Activation Ratio

PHY-Teacher Activation Ratio:

PHY-Teacher's total activation times in one episode one episode length

The activation ratio of PHY-Teacher within an episode decreases over time

DRL-Student becomes independent of **PHY-Teacher** as learning evolves

Experiment-II: Go2 in IsaacGym

Architecture built on Real-DRL

Experiment-II: Go2 in IsaacGym

Evaluation Result

Real-DRL in safety guarantee

NEURAL INFORMATION PROCESSING SYSTEMS

Real-DRL in learning high-performance policy

Experiment-II: Go2 in IsaacGym

Comparison with SOTA

]	Navigation l	Energy Efficiency			
Model ID	Success	Is Fall	Collision	Num (wp)	Travel Time (s)	Avg Power (W)	Total Energy (J)
CLF-DRL	No	Yes	No	0	N/A	N/A	N/A
Phy-DRL	No	No	Yes	1	∞	507.9441	∞
Runtime Assurance	No	Yes	No	2	N/A	N/A	N/A
Neural Simplex	No	No	Yes	2	∞	487.9316	∞
PHY-Teacher	Yes	No	No	4	55.5327	482.8468	26817.68
Our Real-DRL	Yes	No	No	4	45.3383	479.4638	21742.42

Experiment-III: A1 in Real World

NEURAL INFORMATION PROCESSING SYSTEMS

Effectiveness of Real-DRL in Sim2Real

Robot Dog Phase Plot

Experiment-III: A1 in Real World

Real-DRL Fosters Safety-first Learning

Learning in the first Episode (early stage)

Safe learning with Real-DRL after 20 episodes

Summary

Conclusion

Core Contribution

- Real data collection from the hard-to-predict environment
- ☐ Good data (regarding safety) generation from a verifiable PHY-Teacher
- An innovative RL architecture that supports modular design

> Three Notable Features

- ☐ Teaching-to-learn Mechanism (e.g., foster safe learning and fast convergence)
- ☐ Automatic Hierarchy Learning (e.g., learn safety first and high-performance policy)
- ☐ Safety-informed batch sampling (e.g., resolve data imbalance caused by corner cases)

> Soundness and Generality

- ☐ The framework is evaluated across <u>a variety of</u> autonomous systems
- ☐ The experiments incorporate both <u>simulation</u> and <u>real-world</u> evaluations
- ☐ The design of PHY-Teacher provides a theoretical proof of soundness

Miscellaneous

ECVXCONE – A Toolbox Towards Real-DRL on Edge Devices

Cross-Platform and **Runtime-Efficient** Conic Optimization Toolbox for LMIs

	CPU Configurations			Runtime Memory Usage		LMIs Solve Time	
Hardware Platforms	Arch	Core	Frequency	CVXPY	ECVXCONE	CVXPY	ECVXCONE
Dell XPS 8960 Desktop	x86/64	32	5.4 GHz	485 MB	9.87 MB	49.15 ms	13.81 ms
Intel GEEKOM XT 13 Pro Mini	x86/64	20	4.7 GHz	443 MB	7.32 MB	61.76 ms	33.26 ms
NVIDIA Jetson AGX Orin	ARM64	12	2.2 GHz	423 MB	8.16 MB	137.54 ms	35.73 ms
Raspberry Pi 4 Model B	ARM64	4	1.5 GHz	436 MB	8.21 MB	509.41 ms	149.87 ms

Python CVXPY vs C ECVXCONE (Computational Overhead)

The Thirty-Ninth Annual Conference on Neural Information Processing Systems

Thank You for the Attention

Scan To Know More

