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Runtime Safety for Deep Reinforcement Learning (DRL)

Quadruped Robots!?! Humanoid Robots!#!

Autonomous Vehicles!!! Unmanned Aircraft!?!

How do we ensure runtime safety in safety-critical autonomous
systems while DRL agents perform online learning?

Reference:
[1] https://www.wired.com/story/dashcam-footage-shows-driverless-cars-cruise-waymo-clogging-san-Francisco/

[2] https://flyfrompti.com/unmanned-aircraft-systems-uas-drones/
[3] https://droneblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMMejDgA

[4] https://manlybattery.com/guide-to-leading-humanoid-robots/?srsltid=AfmBO o0 1P5Dza-0L 1jEdroApnsv2Um_yD2Wxozw_w 1V-tYzqF2XObhkJ
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Motivation

Data Imbalance Issue from Sampling
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How can the challenges of data imbalance be tackled to
achieve more robust and generalizable DRL policies?
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* Runtime Learning Safety

» The risky nature of trial-and-error exploration in DRL

» Learning in hard-to-predict and hard-to-simulate environments requires timely
and adaptive responses

= Safety-related Data Imbalance Issue

» Underrepresentation of rare but crucial data — poor safety at critical moments

» Leading to training bias and limited generalization capability

= Sampling Efficiency

» High-quality data fosters efficient and safe learning

» Inefficient sampling prolongs training, and increases runtime safety risks
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Proposed Framework
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Novel RL Architecture 'y; .
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1. DRL-Student

S\L: Teaching-to-learn space,
also, marginally-safe space

| LL: Self-learning space |

-------

S: Safety set

dal:

Marginal-safety boundaries|

|
|
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Mission 1: Foster Teaching-to-Learn about Safety

terminal action a(k)

A 4

Safety-Critical Environment: A Real Plant

Examples: f& * ”“}

state s(k)
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Component 1: DRL-Student

o ~

1. Dual buffer for self-learning
and teaching-to-learn paradigm

,-_______-\
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2. Safety-informed batch samphng

1. Fostering the teaching-to-learn
mechanism regarding safety

2. Safety backup for the real plants

o e
—

f' Monitoring the real-time safety

i status of the physical plant, and
i also deciding the terminal action
i to the plant



Component-1: DRL-Student
Safety-informed Batch Sampling

- Teaching-to-learn experience sample

— L, - Total transitions from Teaching-to-learn buffer

Batch Samples

(Corner Case) —
P _ Safety-Status Indicator X
4 V(s) =04 1,
» V(s) = 0.2 ——
*Vs)=00—7 L,
Safety Set S ‘
.....................................................
| : Self-learning experience sample

— L - Total transitions from Self-learning buffer
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' Safety-status indicator
Vis)y2s"-P-s

s — real time state s(t)

____________________________________________

| T N ——

_____________________________________________
g Ss

Total Sampled Batch Size
L=L;+ L,
Ly =min{L, [L - (py - V(s(t)) + p2l}
Lg=L-min{L, [L- (p1 - V(s(t)) + p]}

pP1, P — hyperparameters
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Real-time Patch Design R

S\L: Teaching-to-learn space, System Dynamics: s(¢ + 1) =  (s(?), a(?)), € N
also, marginally-safe space | /77 7T T T T TSmmSSSSmoSmmommommmommme

Safety Set: S 2 {se R"*|-¢c<C-s<c}
Self-Learning Space: L £ {se R*|-n-c¢c<C:-s<p-c},0<pn<1

------------------------------------------------------------------------------------------------

|
LL: Self-learning space i

—————————— -

______________________________________________________________________________________________
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----------- ' Real-time Patch Design P, ‘

....... i (1) Control Goal : s} 2 y-s(k), s(k-1) €L and s(k) € 0L

S: Safety set (2) LMI Feasibility : Construct LMIs and optimize for F

dL: Marginal-safety boundaries i\ @) Action Policy : aceqcner(t) = Fic* (5(t) - 53), 1€ Ty j
Component-111: Trigger g ST
Triggering Condition T : s(k-1) € IL and s(k) € 0L { A o0cner (), if T holds at k, and ¢ € T,
L a(r) = . i

PHY-Teacher Action Step: T, = {k+1, k+2, ..., k+7,} | Astudent(?), 1£5(k) € L ;
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Experiment
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Environmental Setup : e

@@ Friction coefficient
s il
of cart-road: 40

Testing Environment

Friction coefficient
of cart-road: 10

Runtime Learning Environment

Ablation Study — Demonstrating Three Key Features of Real-DRL

o Feature I: Teaching-to-Learn Mechanism

Three Key Features > o Feature II: Safety-informed Batch Sampling

o Feature III: Automatic Hierarchical Learning



Experiment-I: Cartpole

Feature I: Teaching-to-Learn mechanism
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Episode-Average Reward

—— Without Teaching-to-Learn
—— With Teaching-to-Learn
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Episode-Average Reward:

Return (i.e., cumulative reward) in one episode

DRL-Student’s total activation time in one episode

Adopting Teaching-to-Learn paradigm
‘ leads to overall improved episode-average

reward and stable learning



Experiment-I: Cartpole
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Experiment-I: Cartpole

Feature II: Safety-informed Batch Sampling

Testing Environment
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%= Friction coefficient = 40

Friction coefficient =10
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Phase Plot (with vs. without safety-informed sampling)

1. Agent built on Real-DRL maintains

safety on both cases after runtime learning

2. Agent sampling from a united replay
buffer maintains safety in the majority

cases but failed on corner cases
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Feature II1: Automatic Hierarchical Learning RACH
Safety Set
1.0 _
Task Goal: (x*, 07)= (0, 0)
0.5
"%-% ° From the same 1nitial state, after 5 episodes
> A&
o .*K\ . learning by Real-DRL, the trajectory of the
< agent 1s within the safety set (safety-first);
—1.0 : :
o Initial State after 20 episodes, the trajectory gets closer
—1.5 Terminal State: Episode 5 to the control goal (high-performance)
Terminal State: Episode 50
—2.01 A Mission Goal
‘ Automatic Hierarchical Learning:

—1.00—-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
0

Agent Trajectory from Different Episodes (Inference) ~ Safety-first ====== = High-Performance
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- PHY-Teacher Activation Ratio:

O
0o

~

' PHY-Teacher’s total activation times in one episode
one episode length

o o o
(@)]
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The activation ratio of PHY-Teacher

within an episode decreases over time

!

DRL-Student becomes independent of

W

PHY-Teacher's Activation Ratio
o
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Episode Steps .
P P PHY-Teacher as learning evolves

PHY-Teacher Activation Ratio



Experiment-1I: Go2 in IsaacGym

Architecture built on Real-DRL
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PHY-Teacher: Theorem 5.2

Locomotion cotrol
commands

DRL-Student
( Critic \
2.
L i ra gy : 7
e et Helil)e
Eq. (14) " .
> v
/ Actor
= oo agtudent(k)
@
Mission 1: Foster Teaching-to-Learn
ateacher(k)
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Learned Model by Phy-DRL

Learned Model by Runtime Assurance
el

Real-DRL in safety guarantee Real-DRL in learning high-performance policy
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Comparison with SOTA “

3 15000
10000
g 5000
a 0
—— Real-DRL ~— Phy-DRL
—>000 —— Neural Simplex —— CLF-DRL
—— Runtime Assurance
500 1000 1500 2000 2500 3000 3500 4000 4500
Episode Numbers
Navigation Performance | Energy Efficiency
Model ID | Success IsFall Collision Num (wp) Travel Time (s) | Avg Power (W) Total Energy (J)
CLF-DRL | No Yes No 0 N/A | N/A N/A
Phy-DRL | No No Yes 1 00 | 507.9441 00
Runtime Assurance | No Yes No 2 N/A | N/A N/A
Neural Simplex | No No Yes 2 00 | 487.9316 00
PHY-Teacher | Yes No No 4 55.5327 | 482.8468 26817.68
Our Real-DRL | Yes No No 4 45.3383 | 479.4638 2174242




Experiment-I11: Al in Real World
Sim2Real using Real-DRL

Our Real-DRL

&

Effectiveness of Real-DRL in Sim2Real
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—— Phy-DRL
Continual Phy-DRL
—— Our Real-DRL

~
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0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
CoM Height

Robot Dog Phase Plot
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Real-DRL Fosters Safety-first Learning R

DRL-Student in Episode 1

' Learning in the first Episode (early
stage)

DRL-Student in Episode 20

l Safe learning with Real-DRL after
20 episodes
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 Real data collection from the hard-to-predict environment

1 Good data (regarding safety) generation from a verifiable PHY-Teacher

1 An innovative RL architecture that supports modular design

» Three Notable Features

 Teaching-to-learn Mechanism (e.g., foster safe learning and fast convergence)

J Automatic Hierarchy [Learning (e.g., learn safety first and high-performance policy)

1 Safety-informed batch sampling (e.g., resolve data imbalance caused by corner cases)

» Soundness and Generality

 The framework is evaluated across a variety of autonomous systems

d The experiments incorporate both simulation and real-world evaluations

d The design of PHY-Teacher provides a theoretical proof of soundness
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ECVXCONE — A Toolbox Towards Real-DRL on Edge Devices “het

Cross-Platform and Runtime-Efficient Conic Optimization Toolbox for LMIs

CPU Configurations Runtime Memory Usage LMIs Solve Time

Hardware Platforms
Arch  Core Frequency | CVXPY ECVXCONE | CVXPY ECVXCONE

Dell XPS 8960 Desktop x86/64 32 5.4 GHz 485 MB 9.87 MB 49.15 ms 13.81 ms

Inte]l GEEKOM XT 13 Pro Mini | x86/64 20 4.7 GHz 443 MB 7.32 MB 61.76 ms 33.26 ms

NVIDIA Jetson AGX Orin ARM64 12 2.2 GHz 423 MB 8.16 MB 137.54 ms 35.73 ms

Raspberry Pi 4 Model B ARM64 4 1.5 GHz 436 MB 8.21 MB 509.41 ms 149.87 ms

Python CVXPY vs C ECVXCONE (Computational Overhead)


https://github.com/Charlescai123/ecvxcone
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