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Preliminary



Motivation

Runtime Safety for Deep Reinforcement Learning (DRL)

Reference:
[1] https://www.wired.com/story/dashcam-footage-shows-driverless-cars-cruise-waymo-clogging-san-Francisco/
[2] https://flyfrompti.com/unmanned-aircraft-systems-uas-drones/
[3] https://droneblocks.io/product/go2-edu-quadruped-robot/?srsltid=AfmBOoqbUHBaaWUpBTC0kkCZOT4tc_DKzTiHbY6uM4-DF36bHmMejDqA
[4] https://manlybattery.com/guide-to-leading-humanoid-robots/?srsltid=AfmBOoo1P5Dza-0L1jEdroApnsv2Um_yD2Wxozw_w1V-tYzqF2XObhkJ

Autonomous Vehicles[1] Unmanned Aircraft[2] Quadruped Robots[3] Humanoid Robots[4]

How do we ensure runtime safety in safety-critical autonomous 

systems while DRL agents perform online learning?



Motivation

Data Imbalance Issue from Sampling

How can the challenges of data imbalance be tackled to 

achieve more robust and generalizable DRL policies?
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▪ Runtime Learning Safety

➢ Underrepresentation of rare but crucial data → poor safety at critical moments

▪ Safety-related Data Imbalance Issue

Challenges

➢ Leading to training bias and limited generalization capability

▪ Sampling Efficiency

➢ High-quality data fosters efficient and safe learning

➢ Learning in hard-to-predict and hard-to-simulate environments requires timely 

and adaptive responses

➢ The risky nature of trial-and-error exploration in DRL

➢ Inefficient sampling prolongs training, and increases runtime safety risks



Proposed Solution



Proposed Framework

Component 1: DRL-Student

2. Safety-informed batch sampling

Component 3: Trigger

Component 2: PHY-Teacher

1. Dual buffer for self-learning

and teaching-to-learn paradigm

2. Safety backup for the real plants

1. Fostering the teaching-to-learn

mechanism regarding safety

Monitoring the real-time safety

status of the physical plant, and

also deciding the terminal action

to the plant

Safety-critical DataReal-world Data Novel RL Architecture+ +=



Component-I: DRL-Student

Safety-informed Batch Sampling

Safety-status indicator

V(s) ≜ 𝐬𝑇 ∙ P ∙ s

𝑳𝒕 - Total transitions from Teaching-to-learn buffer

𝑳𝒔 - Total transitions from Self-learning buffer

Total Sampled Batch Size

L = 𝐿𝑡 + 𝐿𝑠

𝐿𝑡 = min{L, L ∙ (𝜌1 ∙ V(s(t)) + 𝜌2 }

𝐿𝑠 = L - min{L, L ∙ (𝜌1 ∙ V(s(t)) + 𝜌2 }

s – real time state s(t)

𝜌1, 𝜌2 – hyperparameters



Component-II: PHY-Teacher

Real-time Patch Design

Component-III: Trigger

Safety Set: 𝕊 ≜ {s 𝜖 ℝ𝑛 | -c < C ∙ s < c}

Self-Learning Space: 𝕃 ≜ {s 𝜖 ℝ𝑛 | -𝜂 ∙ c < C ∙ s < 𝜂 ∙ c}, 0 < 𝜂 < 1

Triggering Condition 𝒯 : s(k-1) 𝜖 𝕃 and s(k) 𝜖 𝜕𝕃
a(t) =

a𝑠𝑡𝑢𝑑𝑒𝑛𝑡(t), if s(k) 𝜖 𝕃

a𝑡𝑒𝑎𝑐ℎ𝑒𝑟(t), if 𝒯 holds at k, and t 𝜖 𝕋𝑘

PHY-Teacher Action Step: 𝕋𝑘 ≜ {k+1, k+2, …, k+𝜏𝑘}

Switching Law

System Dynamics: s(t + 1) = f (s(t), a(t)), t 𝜖 ℕ

③ Action Policy : a𝑡𝑒𝑎𝑐ℎ𝑒𝑟(t) = 𝑭𝑘 ∙ (s(t) - 𝒔𝑘
∗ ), t 𝜖 𝕋𝑘

Real-time Patch Design ℙ𝑘

① Control Goal : 𝒔𝑘
∗ ≜ 𝜒 ∙ s(k), s(k-1) 𝜖 𝕃 and s(k) 𝜖 𝜕𝕃

② LMI Feasibility : Construct LMIs and optimize for 𝑭𝑘



Experiment



Experiment-I: Cartpole

Environmental Setup

Ablation Study – Demonstrating Three Key Features of Real-DRL

Three Key Features

o Feature I: Teaching-to-Learn Mechanism

o Feature II: Safety-informed Batch Sampling

o Feature III: Automatic Hierarchical Learning

Runtime Learning Environment

Testing Environment

Friction coefficient 

of cart-road: 40

Friction coefficient 

of cart-road: 10



Experiment-I: Cartpole

Feature I: Teaching-to-Learn mechanism

Episode-Average Reward

Episode-Average Reward:

Adopting Teaching-to-Learn paradigm 

leads to overall improved episode-average 

reward and stable learning
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Experiment-I: Cartpole

Feature II: Safety-informed Batch Sampling

1. Agent built on Real-DRL maintains

safety on both cases after runtime learning

2. Agent sampling from a united replay

buffer maintains safety in the majority

cases but failed on corner cases

Phase Plot (with vs. without safety-informed sampling)

Friction coefficient = 40

Friction coefficient = 10

Runtime Learning Environment

Testing Environment



Experiment-I: Cartpole

Feature III: Automatic Hierarchical Learning

Automatic Hierarchical Learning:

Task Goal: ( ҧ𝑥∗, ҧ𝜃∗) = (0, 0)

Agent Trajectory from Different Episodes (Inference)

Safety Set

From the same initial state, after 5 episodes

learning by Real-DRL, the trajectory of the

agent is within the safety set (safety-first);

after 20 episodes, the trajectory gets closer

to the control goal (high-performance)

Safety-first High-Performance



Experiment-I: Cartpole

Feature III: Automatic Hierarchical Learning

The activation ratio of PHY-Teacher 

within an episode decreases over time

PHY-Teacher Activation Ratio:

PHY-Teacher Activation Ratio

DRL-Student becomes independent of

PHY-Teacher as learning evolves



Experiment-II: Go2 in IsaacGym

Architecture built on Real-DRL



Experiment-II: Go2 in IsaacGym
Evaluation Result

Real-DRL in safety guarantee Real-DRL in learning high-performance policy



Experiment-II: Go2 in IsaacGym

Comparison with SOTA



Experiment-III: A1 in Real World

Sim2Real using Real-DRL

Effectiveness of Real-DRL in Sim2Real Robot Dog Phase Plot



Experiment-III: A1 in Real World

Real-DRL Fosters Safety-first Learning

Learning in the first Episode (early

stage)

Safe learning with Real-DRL after

20 episodes



Summary



➢ Three Notable Features 

❑ Teaching-to-learn Mechanism (e.g., foster safe learning and fast convergence)

❑ Automatic Hierarchy Learning (e.g., learn safety first and high-performance policy)

❑ Safety-informed batch sampling (e.g., resolve data imbalance caused by corner cases)

➢ Core Contribution

❑ Real data collection from the hard-to-predict environment

❑ Good data (regarding safety) generation from a verifiable PHY-Teacher

❑ An innovative RL architecture that supports modular design

➢ Soundness and Generality 

Conclusion

❑ The framework is evaluated across a variety of autonomous systems

❑ The experiments incorporate both simulation and real-world evaluations

❑ The design of PHY-Teacher provides a theoretical proof of soundness



Miscellaneous

ECVXCONE – A Toolbox Towards Real-DRL on Edge Devices

Python CVXPY vs C ECVXCONE (Computational Overhead)

Cross-Platform and Runtime-Efficient Conic Optimization Toolbox for LMIs

https://github.com/Charlescai123/ecvxcone
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